The Trumpet Creeper

Photo by beautifulcataya licensed under CC BY-NC-ND 2.0

Photo by beautifulcataya licensed under CC BY-NC-ND 2.0

With its impressive bulk and those stunning tubular red flowers, one would be excused for thinking that the trumpet creeper (Campsis radicans) was a tropical vine. Indeed, the family to which it belongs, Bignoniaceae, is largely tropical in its distribution. There are a handful of temperate representatives, however, and the trumpet creeper is one of the most popular. Its beauty aside, this plant is absolutely fascinating.

As many of you probably know, the trumpet creeper can reach massive proportions. In the garden, this can often result in collapsed structures as its weight and speed of growth is something few adequately prepare for. In the wild, I most often see this vine in somewhat disturbed forests, usually near a floodplain. As such, it is supremely adapted to take a hit and keep on growing year after year.

Photo by Maja Dumat licensed under CC BY 2.0

Photo by Maja Dumat licensed under CC BY 2.0

One of the many reasons this plant performs so well both where it is native and where it is not is that it recruits body guards. This is easy to witness in a garden setting as the branches and especially the flowers are frequently crawling with ants. Trumpet creepers trade food for protection via specialized organs called extrafloral nectaries. These structures secrete sugary nectar that is readily sucked up by tenacious ants. When a worker ant finds a vine, more workers are soon to follow. 

Amazingly for a temperate plant, trumpet creepers produce more extrafloral nectaries of all four categories - petiole, calyx, corolla, and fruit. What this means is that all of the important organs are covered in insects that viciously attack anything that might threaten this sugary food supply. Hassle one of these vines at your own peril. With its photosynthetic and reproductive structures protected, trumpet creepers make a nice living once established.

Photo by Salicyna licensed under CC BY-SA 4.0

Photo by Salicyna licensed under CC BY-SA 4.0

Reproduction is another fascinating aspect of trumpet creeper biology. A closer inspection of the floral anatomy will reveal a bilobed stigma. Amazingly, this stigma has the ability to open and close as potential pollinators visit the flowers. Stigmatic movement in the trumpet creeper has attracted a bit of attention from researchers over the years. What is its function?

Evidence suggests that the opening and closing of the lobed stigma is way of increasing the chances of pollination. Touch alone is not enough to trigger the movement. However, when researchers dusted pollen onto the stigma, then it began to close. What's more, this action happens within 15 to 60 seconds. Amazingly, there appears to be a threshold to whether the stigma stays closed or reopens after 3 hours or so.

Photo by Jim Conrad (Public Domain)

Photo by Jim Conrad (Public Domain)

It turns out, the threshold seems to depend on the amount of pollen being deposited. Only after 350 grains found their way onto the stigma did it close permanently. Experts feel that this a means by which the plant ensured ample seed set. If too few pollen grains end up on the stigma, the plant risks not having all of its ovules fertilized. By permanently closing after enough pollen grains are present, the plant can ensure that the pollen grains can germinate and fertilize the ovules without being brushed off.

It is interesting to note that the flowers frequently remain on the plant after they have been fertilized. This likely serves to maintain a largely floral display that continues to attract pollinators until most of the flowers have been pollinated. Speaking of pollinators, observations have revealed that the trumpet creeper is pollinated primarily by ruby-throated hummingbirds. Although insects like bumblebees frequently visit these blooms, bringing pollen with them in the process, hummingbirds, on average, bring and deposit 10 times as much pollen as any other visitor. And, considering the threshold on pollen mentioned above, trumpet creeper appears to have evolved a pollination syndrome with these lovely little birds.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4]

Meet the Ocotillo

Copy of IMG_4077.JPG

I love the ocotillo (Fouquieria splendens) for many reasons. It is an impossible plant to miss with its spindly, spine-covered stems. It is a lovely plant that is right at home in the arid parts of southwestern North America. Beyond its unique appearance, the ocotillo is a fascinating and important component of the ecology of this region.

My first impression of ocotillo was interesting. I could not figure out where this plant belonged on the tree of life. As a temperate northeasterner, one can forgive my taxonomic ignorance of this group. The family from which it hails, Fouquieriaceae, is restricted to southwestern North America. It contains one genus (Fouquieria) and about 11 species, all of which are rather spiky in appearance.

IMG_4079(1).JPG

Of course, those spines serve as protection. Resources like water are in short supply in desert ecosystems so these plants ensure that it is a real struggle for any animal looking to take a bite to get at the sap inside. Those spines are tough as well. One manged to pierce the underside of my boot during a hike and I was lucky that it just barely grazed the underside of my foot. Needless to say, the ocotillo is a plant worthy of attention and respect.

One of the most striking aspects of ocotillo life is how quickly these plants respond to water. As spring brings rain to this region of North America, ocotillo respond with wonderful sprays of bright red flowers situated atop their spindly stems. These blooms are usually timed so as to take advantage of migrating hummingbirds and emerging bees. The collective display of a landscape full of blooming ocotillo is jaw-droppingly gorgeous and a sight one doesn't soon forget. It is as if the whole landscape has suddenly caught on fire. Indeed, the word "ocotillo" is Spanish for "little torch."

DSCN4088.JPG

Flowering isn't the only way this species responds to the sudden availability of water. A soaking rain will also bring about an eruption of leaves, turning its barren, white stems bright green. The leaves themselves are small and rather fragile. They do not have the tough, succulent texture of what one would expect out of a desert specialist. That is because they don't have to ride out the hard times. Instead, ocotillo are what we call a drought deciduous species, producing leaves when times are good and water is in high supply, and dropping them as soon as the soil dries out.

DSCN4280.JPG

This cycle of growing and dropping leaves can and does happen multiple times per year. It is not uncommon to see ocotillo leaf out up to 4 or 5 times between spring and fall. During the rest of the year, ocotillo relies on chlorophyll in its stems for its photosynthetic needs. Interestingly enough, this poses a bit of a challenge when it comes to getting enough CO2. Whereas leaves are covered in tiny pours called stomata which help to regulate gas exchange, the stems of an ocotillo are a lot less porous, making it a challenge to get gases in and out. This is where the efficient metabolism of this plant comes in handy.

All plants undergo respiration like you and me. The carbohydrates made during photosynthesis are broken down to fuel the plant and in doing so, CO2 is produced. Amazingly, the ocotillo (as well as many other plants that undergo stem photosynthesis) are able to recycle the CO2 generated by cellular respiration back into photosynthesis within the stem. In this way, the ocotillo is fully capable of photosynthesis even without leaves.

DSCN4295.JPG

Through the good times and the bad, the ocotillo and its relatives are important components of desert ecology. They are as hardy as they are beautiful and getting to see them in person has been a remarkable experience. They ad a flare of surreality to the landscape that must be seen in person to believe.

Further Reading: [1] [2] [3] [4] [5]