Bird Pollination Of The Bird Of Paradise

Public domain

Public domain

Who hasn't stared in wonderment at the inflorescence of a bird of paradise? One doesn't need too much of an imagination to understand how these plants got this common name. Flowers, however, did not evolve in response to our aesthetic tastes. They are solely for sex and in the case of bird of paradise, Strelitzia reginae, pollination involves birds.

In its native range in South Africa, S. reginae is pollinated by sunbirds, primarily the Cape weaver (Ploceus capensis). That alluring floral morphology is wonderfully adapted to maximize the chances of successful cross-pollination by their avian visitors. Cape weavers are looking for a sip of energy rich nectar. To get at said nectar, the birds must perch on the inflorescence. Not any position will do either.

Photo by Forest & Kim Starr licensed under CC BY 3.0

Photo by Forest & Kim Starr licensed under CC BY 3.0

To get their reward, the birds must perch so that their beaks are at just the right angle to reach down into the floral tubes. The plant ensures this by providing a convenient perch. Those fused blue petals are structurally reinforced and actually serve as a convenient perch! Upon alighting on the perch, the hidden anthers are thrust outward from their resting chamber, brushing up against the bird's feet in the process. The Cape weaver doesn't move around much once on the flower so self pollination is minimized.

When the bird visits another plant, the process is repeated and pollination is achieved. Seed set is severely pollen limited. This is a good thing considering how popular they are in cultivation. Plants growing outside of South Africa rarely set seed without a helping hand. However, here in North America, some birds seemed to have figured out how to get at bird of paradise nectar.

Observations made in southern California found that at least one species of warbler, the common yellowthroat (Geothlypis trichas), not only made regular visits to a stand of S. reginae, it also seemed to figure out the proper way to do so. Individuals were seen perching on the floral perch and drinking the nectar. They were pretty effective visitors at that. Of the 14,400 inflorescence found within the study area, 88% of them produced viable seed! It seems that far from its native range, S. reginae has a friend in at least one New World warbler. Armed with this knowledge, land owners should be vigilant to ensure this plant doesn't become a problem in climates suitable for its growth.

Photo Credits: [1] [2] [3]

Further Reading: [1]

 

A Peculiar Case of Bird Pollination

Via Johnson and Brown [SOURCE]

Via Johnson and Brown [SOURCE]

When we think of bird pollination, we often conjure images of a hummingbird sipping nectar from a long, tubular, red flower. Certainly the selection pressures brought about from entering into a pollination syndrome with birds has led to convergence in floral morphology across a wide array of different plant genera. Still, just when we think we have the natural world figured out, something new is discovered that adds more complexity into the mix. Nowhere is this more apparent than the peculiar relationship between an orchid and a bird native to South Africa.

The orchid in question is known scientifically as Disa chrysostachya. It is a bit of a black sheep of the genus. Whereas most Disa orchids produce a few large, showy flowers, this species produces a spike that is densely packed with minute flowers. They range from orange to red and, like most other bird pollinated flowers, produce no scent. 

Take the time to observe them in the field and you may notice that the malachite sunbird is a frequent visitor. The sunbirds perch themselves firmly on the spike and probe the shallow nectar spurs on each flower. At this point you may be thinking that the pollen sacs, or pollinia, of the orchid are affixed to the beak of the bird but, alas, you would be wrong. 

Closer inspection of the flowers reveal that the morphology and positioning of the pollinia are such that they simply cannot attach to the beak of the bird. The same goes for any potential insect visitors. The plant seems to have assured that only something quite specific can pick up the pollen. To see what is really going on, you would have to take a look at the sunbird's feet. 

That's right, feet. When a sunbird feeds at the flowers of D. chrysostachya, its feet position themselves onto the stiffened lower portion of the flower. This is the perfect spot to come into contact with the sticky pollinia. As the bird feeds, they pick up the pollinia on their claws! The next time the bird lands to feed, it will inevitably deposit that pollen. The orchids seemed to have benefited from the fact that once perched, sunbirds don't often reposition themselves on the flower spike. In this way, self pollination is minimized. A close relative, D. satyriopsis, has also appeared to enter into a pollination with sunbirds in a similar way. 

Though it may seem inefficient, research has shown that this pollination mechanism is quite successful for the orchid.The pollinia themselves stick quite strongly so that no amount of scuffing on branches or preening with beaks can dislodge them. Once pollination has been achieved, each flower is capable of producing thousands upon thousands of seeds.

Photo Credit: Johnson and Brown

Further Reading: [1]