Hydatellaceae: The Other Basal Angiosperms

Photo by Kevin Thiele licensed under CC BY 2.0

Photo by Kevin Thiele licensed under CC BY 2.0

Though rather obscure to most of the world, the genus Trithuria has enjoyed somewhat of a celebrity status in recent years. A paper published in 2007 lifted this tiny group of minuscule aquatic plants out of their spot in Poales and granted them a place among the basal angiosperm lineage Nymphaeales. This was a huge move for such little plants. 

The genus Trithuria contains 12 species, the majority of which reside in Australia, however, two species, T. inconspicua and T. konkanensis, are native to New Zealand and India. They are all aquatic herbs and their diminutive size and inconspicuous appearance make them easy to miss. For quite some time these odd plants were considered to be a group of highly reduced monocots. Their original placement was in the family Centrolepidaceae. All of that changed in 2007.

Close inspection of Trithuria DNA told a much different story. These were not highly reduced monocots after all. Instead, multiple analyses revealed that Trithuria were actually members of the basal angiosperm lineage Nymphaeales. Together with the water lilies (Nymphaeaceae) and the fanworts (Cabombaceae), these plants are living representatives of some of the early days in flowering plant evolution. 

Of course, DNA analysis cannot stand on its own. The results of the new phylogeny had to be corroborated with anatomical evidence. Indeed, closer inspection of the anatomy of Trithuria revealed that these plants are truly distinct from members of Poales based on a series of features including furrowed pollen grains, inverted ovules, and abundant starchy seed storage tissues. Taken together, all of these lines of evidence warranted the construction of a new family - Hydatellaceae.

The 12 species of Trithuria are rather similar in their habits. Many live a largely submerged aquatic lifestyle in shallow estuarine habitats. As you may have guessed, individual plants look like tiny grass-like rosettes. Their small flower size has lent to some of their taxonomic confusion over the years. What was once thought of as individual flowers were revealed to be clusters or heads of highly reduced individual flowers. 

Reproduction for these plants seems like a tricky affair. Some have speculated that water plays a role but close inspections of at least one species revealed that very little pollen transfer takes place in this way. Wind is probably the most common way in which pollen from one plant finds its way to another, however, the reduced size of these flowers and their annual nature means there isn't much time and pollen to go around. It is likely that most of the 12 species of Trithuria are self-pollinated. This is probably quite useful considering the unpredictable nature of their aquatic habitats. It doesn't take much for these tiny aquatic herbs to establish new populations. In total, Trithuria stands as living proof that big things often come in small packages. 

Photo Credits: [1]

Further Reading: [1] [2] [3]

 

Mighty Magnolias

Magnolias are one of those trees that even the non-botanically minded among us will easily recognize. They are one of the more popular plant groups grown as ornamentals and their symbolism throughout human history is quite interesting. But, for all this attention, few may realize how special magnolias really are. Did you know they they are one of the most ancient flowering plant lineages in existence?

Magnolias first came on to the scene somewhere around 95 million years ago. Although they are not representative of what the earliest flowering plants may have looked like, they do offer us some interesting insights into the evolution of flowers. To start with, the flower bud is enclosed in bracts (modified leaves) instead of more differentiated sepals. The "petals" themselves are not actually petals but tepals, which are also undifferentiated. The most striking aspect of magnolia flower morphology is in the actual reproductive structures themselves.

Magnolias evolved before there were bees. Because of this, the basic structure that makes them unique was in place long before bees could work as a selective pressure in pollination. Beetles are the real pollinators of magnolia flowers. The flowers have a hardened carpel to avoid damage by their gnawing mandibles as the feed. The beetles are after the protein-rich pollen. Because the beetles are interesting in pollen and pollen alone, the flowers mature in a way that ensures cross pollination. The male parts mature first and offer said pollen. The female parts of the flower are second to mature. They produce no reward for the beetles but are instead believed to mimic the male parts, ensuring that the beetles will spend some time exploring and thus effectively pollinating the flowers.

It is pretty neat to think that you don't necessarily have to track down a dawn redwood or a gingko to see a plant that has survived major extinction events. You can find magnolias very close to home with a keen eye. Looking at one, knowing that this is a piece of biology that has worked for millennia, is quite astounding in my opinion.

Further Reading: [1] [2] [3] [4]

Tomatillos Just Got A Lot Older

Tomatillos and ground cherries just got a bit older. Okay, a lot older. Exquisitely preserved fossils from an ancient lake bed in Argentina are shining a very bright light on the genus Physalis and the family Solanaceae as a whole. Despite the importance of this plant family around the globe, little fossil evidence has ever been found. That is, until now. 

Dated at 52 million years old, these fossils paint a picture of a snapshot in the evolution of the genus Physalis. The fossils are remarkable, allowing for close inspection of minute details like vein structure. Because of the level of detail discernible, experts can say without a doubt that these fossils could be nothing else other than a species of Physalis

One of the most interesting aspects of these fossils is their age. These sediments were deposited during the early Eocene Epoch. The fact that representatives of Physalis were alive and well during this time is quite remarkable. Because fossil evidence for Solanaceae has been so scarce, experts have had to rely solely on molecular dating in order to elucidate the origin and divergence of this family. 

Original estimates placed the origin of Solanaceae at sometime around 30 million years before present. Physalis, being much more derived, was thought to have an even more recent emergence, some 9 million years ago. Boy, was that ever wrong. At 52 million years of age, we can now confidently say that Physalis is at least 43 million years older than previously thought. These findings also tell us that Solanaceae is even older still! If such a derived genus was thriving in Eocene Argentina 52 million years ago, basil members of the family must have gotten their start much earlier than we ever imagined. 

Aside from big picture taxonomical revelations, the fossils also give us a window into the ecology of these ancient Physalis. The most obvious is that inflated bladder which surrounds the berry within. Though it is quite characteristic of this group, little attention has been paid to its function. The fact that the sediments in which they were preserved are of aquatic origin suggests that the inflated calyces may have evolved for aquatic seed dispersal. Experiments have shown that these structures on modern day ground cherries and tomatillos do in fact float, keeping the berry inside high and dry. 

To think that all of this was brought to light from a handful of fossils. It just goes to show you the importance the paleontological discoveries can have. Just think of the countless amount of museum drawers and shelves that are chock full of interesting fossils waiting to be looked over. Who knows what they might tell us about our planet. 

Photo Credit: Ignacio Escapa, Museo Paleontológico Egidio Feruglio

Further Reading: [1]

Meeting Amborella trichopoda

When I found out I would be seeing a living Amborella, a lump formed in my throat. There I was standing in one of the tropical houses at the Atlanta Botanical Garden trying to keep my cool. No amount of patience was ample enough to quell my excitement. How was I going to react? How big were these plants? Would I see flowers? Could I touch them? What were they growing in? My curiosity was through the roof.

Naturally this sort of excitement is reserved for those of us familiar with Amborella trichopoda. This strange shrub is not something that would readily stand out against a backdrop of tropical flora. However, if life history and ecology were to be translated into outward appearances, Amborella would likely be one of the most gaudy plants on this planet. What I was about the lay eyes on is the only member of the sole genus belonging to the family Amborellaceae, which is the sole member of the order Amborellales.

Even more exciting is its position on the angiosperm family tree. As flowering plants go, Amborella is thought to be the oldest alive today. Okay, so maybe this shrub isn't the oldest flowering plant in the world. It is likely that at one time, many millions of years ago, there were more representatives of Amborellaceae growing on this planet. Until we turn up more fossil evidence it is nearly impossible to say. Still, Amborella's place in the story of flowering plant evolution is consistently located at the base.

That is not to say that this shrub is by any means primitive. I think the first thing that shocked me about these plants is just how "normal" they appear. Sans flowers, I didn't see much out of the ordinary about them. They certainly look like they belong on our timeline. Without proper training in plant anatomy and physiology, there is little one could deduce about their evolutionary position. Regardless of my ignorance on plant morphology, there is plenty to look at on Amborella.

For starters, Amborella has tracheids but no vessel elements, making its vascular system more like that of a gymnosperm than an angiosperm. Its small flowers are borne in the axils of the evergreen leaves. It has no petals, only bracts arranged into a spiral of tepals. The female flowers consist of 4 to 8 free carpels and do not produce a style. Male flowers look like nothing more than a spiral cluster of stamens borne on short filaments.

If plant anatomy isn't enough to convince you, then the genetic analyses tell a much more compelling story. DNA sequencing consistently places Amborella at the base of the flowering plant family tree. Again, this is not to say that this shrub is by any means "primitive" but rather its lineage diverged long before what we would readily recognize as a flowering plant evolved. As such, Amborella offers us a window into the early days of flowering plants. By comparing traits present in more derived angiosperms to those of Amborella, researchers are able to better understand how the most dominant group of plants found their place in this world.

Another interesting thing happened when researchers looked at the DNA of Amborella. What they found was more than just Amborella genes. Inside the mitochondrial DNA are an unprecedented amount of foreign DNA from algae, lichens and mosses. In fact, an entire chunk of DNA corresponded to an entire mitochondrial genome of a moss! Researchers now believe that this is a case of extreme horizontal gene transfer between Amborella and its neighbors both growing on and around it. Both in the wild and in cultivation, Amborella is covered in a sort of "biofilm." Whether or not such gene transfer has assisted in the conservatism of this lineage over time remains to be seen.

At this point you may be asking how this lineage has persisted for over 130 million years. For the most part, it is probably due to chance. However, there is one aspect of its ecology that really stands out in this debate and that is its geographic distribution. Amborella is endemic to Grande Terre, the main island of New Caledonia. This is a very special place for biodiversity.

New Caledonia is a small fragment of the once great super-continent Gondwana. New Caledonia, which was part of Australia at that time, broke away from Gondwana when the super-continent began to break up some 200-180 million years ago. New Caledonia then broke away from Australia some 66 million years ago and has not been connected to another land mass since. A warm, stable climate has allowed some of the most unique flora and fauna to persist for all that time. Amborella is but one of the myriad endemic plants that call New Caledonia home. For instance, 43 species of tropical conifers that grow on these small islands are found nowhere else in the world. The whole region is a refugia of a long lost world.

Being a biodiversity hot spot has not spared New Caledonia from the threats of modern man. Mining, agriculture, urbanization, and climate change are all threatening to undo much of what makes this place so unique. The loss of a species like Amborella would be a serious blow to biodiversity, conservation, and the world as whole. We cannot allow this species to exist only in cultivation. New Caledonia is one place we must desperately try to conserve. Meeting this species has left a mark on me. Being able to observe living Amborella up close and personal is something I will never forget as my chances of seeing this species in the wild are quite slim. I am so happy to know that places like the Atlanta Botanical Garden are committed to understanding and conserving this species both in the wild and in cultivation. For now Amborella is here to stay. Long may it be that way.

 

Further Reading:

http://bit.ly/29MuMuw

http://bit.ly/29MuML0

http://bit.ly/29ZKNJS

 

A Flower Trapped in Amber

Photo by George Poinar [SOURCE]

Photo by George Poinar [SOURCE]

Thanks to a 30 year old collection of amber tucked away in the drawers of a museum, we now have the first fossil record of the asterid lineage. Discovered in the Dominican Republic back in 1986, this particular chunk of amber contains a tiny flower about a centimeter in length. The preservation is astounding, allowing researchers to accurately identify this as a member of the genus Strychnos.

The asterid lineage contains many orders that we would be familiar with including Gentianales, Lamiales and Solanales. It is highly derived yet poorly represented in the fossil record. Because of the challenges associated with accurately dating amber, scientists estimate that this flower is somewhere between 15 - 45 million years old. To put this in perspective, North and South America were not even connected at this point in time. What's more, the details preserved in these amber deposits are allowing researchers to piece together what the forest in this region would have looked like.

These fossils show that this forest "contained a distinct canopy layer composed of legumes such as algarroba (Hymenaea protera), cativo (Prioria spp.) and nazareno (Peltogyne spp.), with emergent trees like caoba (Swietenia; Meliaceae) extending through the canopy. The subcanopy and understory were represented by royal palms (Roystonea) and figs (Ficus; Moraceae). The shrub layer included other types of palms as well as acacias. Grasses like pega-lega (Pharus) and bambusoids (Alarista) colonized the forest floor. Orchids, bromeliads, ferns and vines covered the trees, and various lianas were also part of this tropical forest."

Pretty amazing for bits and pieces of solidified tree sap. This particular flower has been named Strychnos electri, a now extinct species. However, the morphological characteristics show that this particular genus as well as the asterid lineage were already well established at this time. Discoveries such as this are offering highly detailed windows into the past, which allows us to better understand flowering plant evolution and ecosystem change.

Photo Credit: George Poinar

Further Reading:
http://www.nature.com/articles/nplants20165