Cretaceous Seeds Shine Light on the Evolution of Flowering Plants

What you are looking at here are some of the earliest fossil remains of flowering plants. These seeds were preserved in Cretaceous sediments dating back some 125–110 million years ago. Fossil evidence dating to the early days of the angiosperm lineage is scant, which makes these fossils all the more spectacular. Thanks to a large collaborative effort, Dr. Else Marie Friis is shining light on the evolution of seeds.

Finding these fossils is not a matter of seeing them with the naked eye. These seeds are tiny, ranging from half a millimeter up to 2 millimeters in length. They were discovered using an advanced form of X-ray microscopy. The advantage of this technique is not only that it is nondestructive but it also allows researchers to investigate the internal structures of the seeds that would otherwise be impossible to see. Their preservation is mind blowingly delicate, allowing researchers to see minute details of the embryo and even subcellular structures like nuclei. 

Dr. Friis' team was able to look at over 250 fossil seeds from 75 different taxa. They were able to make 3D models of the embryos, allowing for more detailed studies than ever before. For some of the fossils, the detail was such that they were able to match them to extant lineages of flowering plants. For others, this technique is allowing for better reclassification of now extinct species. 

By far the most exciting part about these fossils are what they can tell us about the ecology of early flowering plants. In all instances, the embryos within the seeds were small, immature, and dormant. This suggests that seed dormancy is a fundamental trait of flowering plants. What's more, this lends support to the hypothesis that angiosperms first evolved as opportunistic, early successional colonizers. Seed dormancy allows flowering plants to wait out the bad times until favorable environmental conditions allowed for germination and seedling establishment. 

Photo Credit: Dr. Else Marie Friis

Further Reading:
http://www.nature.com/nature/journal/v528/n7583/full/nature16441.html