How a cactus from the Andes may be using hairs to attract its bat pollinators

Plants go to great lengths to attract pollinators. From brightly colored flowers to alluring scents and even some sexual deception, there seems to be no end to what plants will do for sex. Recently, research on the pollination of a species of cactus endemic to the Ecuadorian Andes suggests that even plant hairs can be co-opted for pollinator attraction.

Espostoa frutescens is a wonderful columnar cactus that grows from 1,600 ft (487 m) to 6,600 ft (2011 m) in the Ecuadorean Andes. Like many other high elevation cacti, this species is covered in a dense layer of hairy trichomes. These hairs serve an important function in these mountains by protecting the body of the plant from excessive heat, cold, wind, and UV radiation. Espostoa frutescens takes this a step further when it comes time to flower. It is one of those species that produces a dense layer of hairs around its floral buds called a cephalium. Cacti cephalia are thought to have evolved as a means of protecting developing flowers and fruits from the outside elements. What scientists have now discovered is that, at least for some cacti, the cephalium may also serve an important role in attracting bats.

Bats are famous for their use of echolocation. Because they mainly fly at night, bats rely on sound and scent, rather than sight to find food. More and more we are realizing that a lot of plants have taken advantage of this by producing structures that reflect bat sonar in such a way that makes them more appealing to bats. Some plants, like Mucuna holtonii and Marcgravia evenia, do this for pollination. Others, like Nepenthes hemsleyana, do this to obtain a nitrogen-rich meal.

Espostoa frutescens apparently differs from these examples in that its not about reflecting bat sonar, but rather absorbing it at specific frequencies. Close examination of the hairs that comprise the E. frutescens cephalium revealed that they were extremely well adapted for absorbing ultrasonic frequencies in the 90 kHz range. This may seem arbitrary until you look at who exactly pollinates this cactus.

The main pollinator for E. frutescens is a species of bat known as Geoffroy’s tailless bat (Anoura geoffroyi). It turns out that Geoffroy’s tailless bat happens to echolocate at a frequencies right around that 90 kHz range. Whereas the rest of the body of the cactus reflects plenty of sound, bat calls reaching the cephalium of E. frutescens bounced back an average of 14 decibels quieter.

Essentially, the area of floral reward on this species of cactus presents a much quieter surface than the rest of the plant itself. It is very possible that this functions as a sort of calling card for Geoffroy’s tailless bats looking for their next meal. This makes sense from a communication standpoint in that it not only saves the bats valuable foraging time, it also increases the chances of cross pollination for the cactus. To obtain enough energy from flowers, bats must travel great distances. Anything that helps them locate a meal faster will increase visitation to that flower. By changing the way in which the flowers “appear” to echolocating bats, the cacti thus increase the amount of visitation from bats, which brings pollen in from cacti located over the bats feeding range.

It is important to note that, at this point in time, research has only been able to demonstrate that the hairs surrounding E. frutescens flowers are more absorbent to the ultrasonic frequencies used by Geoffroy’s tailless bat. We still have no idea whether bats are more likely to visit flowers borne from cephalia or not. Still, this research paves the way for even more experiments on how plants like E. frutescens may be “communicating” with pollinators like bats.

Photo by Merlin Tuttle’s Bat Conservation. Please Consider supporting this incredible conservation group!

Further Reading: [1]

A Palm With a Unique Pollination Syndrome

Photo by Dr. Scott Zona licensed under CC BY-NC 2.0

Photo by Dr. Scott Zona licensed under CC BY-NC 2.0

I would like to introduce you to the coligallo palm (Calyptrogyne ghiesbreghtiana). The coligallo palm is a modest palm, living out its life in the understory of wet, tropical forests from Mexico to Panama. To the casual observer, this species doesn’t present much of anything that would seem out of the ordinary. That is, until it flowers. Its spike-like inflorescence is covered in fleshy white flowers that smell of garlic and as far as we know, the coligallo palm is the only palm that requires bats for pollination.

Flowering for this palm occurs year round. At first glance, the inflorescence doesn’t appear out of the ordinary but that is where close observation comes in handy. The more scrutiny they are given, the more strange they appear. As mentioned, the flowers are bright white in color and they smell strongly of garlic. Also, they are protandrous, meaning the male flowers are produced before the female flowers.

Photo by Dr. Scott Zona licensed under CC BY-NC 2.0

Photo by Dr. Scott Zona licensed under CC BY-NC 2.0

After the male flowers have shed their pollen, there is a period of a few days in which no flowers are produced. Then, after 3 to 4 nights of no flowers, female flowers emerge, ready to receive pollen. Each flower only opens at night and does not last for more than a single evening. Protandry is an excellent strategy to avoid self-pollination. By separating male and female flowers in time, each plant can assure that its own pollen will not be deposited back onto its own stigmas. The fact that the coligallo palm flowers year-round means that there is always a receptive plant somewhere in the forest.

The oddities do not end there. Both male and female flowers are covered in a fleshy tube that must be removed for pollination to occur successfully. Removal of the tube is what actually exposes the reproductive organs and allows pollen transfer to occur. Often times, the flowers of the coligallo palm are dined upon by katydids and other insect herbivores. This does not result in pollination as they completely destroy the flower as they eat. Considering the success of this plant across its range, it stands to reason that something else must provide ample pollination services.

Two species of bat visiting coligallo palm inflorescences: A) A perching Artibeus bat feeding on male flowers and B) a hovering Glossophaga bat feeding on female flowers.

Two species of bat visiting coligallo palm inflorescences: A) A perching Artibeus bat feeding on male flowers and B) a hovering Glossophaga bat feeding on female flowers.

As it turns out, bats are that pollinator. The job of pollination is not accomplished by a single species of bat either. A few species have been observed visiting the inflorescences. Apparently the bright color and strong odor of the flowers acts as a calling card for flower-feeding bats throughout these forests. Interestingly, the feeding mechanism of each species of bat differs as well. Some bats hover at the inflorescence like hummingbirds, chewing off the fleshy tube from individual flowers as they go. Other bats prefer to perch on the inflorescence itself, crawling all over it as they eat. These different feeding behaviors actually result in different levels of pollination. Though both forms do result in seed set, perching bats appear to be the most effective pollinators of the coligallo palm.

The reason for this is due to the fact that perching bats not only spend more time on the inflorescence, their bodies come into contact with far more flowers as they feed. Hovering bats, on the other hand, only manage to contact a few flowers with their snout at a time. So, despite the variety of bats recorded visiting coligallo palms, the perching bats appear to provide the best pollination services.

A coligallo palm infructescence showing signs of ample pollination. Photo by Dick Culbert licensed under CC BY 2.0

A coligallo palm infructescence showing signs of ample pollination. Photo by Dick Culbert licensed under CC BY 2.0

The role of perching bats in the ecology of this palm species does not end with pollination either. It turns out, they also play a crucial role in the dispersal of certain mites that live on the palm flowers. Flower mites live on plants and consume tiny amounts of pollen and nectar. As you can imagine, their small size makes it incredibly difficult for them to find new feeding grounds. This is where perching bats come into play.

It was discovered that besides pollen, perching bats also carried considerable loads of flower mites in their fur. The mites crawl onto the bat as they visit one inflorescence and climb off when they visit another. This is called phoresy. The bats are not harmed by these hitchhikers but are essential to the mite lifecycle. Thanks to their bat transports, the mites are able to make it to new feeding grounds far away from their original location. Though little is known about these mites, it has been suggested that the mites living on the coligallo palm are unique to that species and probably feed on no other plants.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3]




A Bat-Pollinated Passion Flower From Ecuador

Say "hello" to one of Passiflora's most recent additions, the bat-pollinated Passiflora unipetala. The first specimens of this vine were discovered back in 2009 by Nathan Muchhala while studying flower visiting bats in northern Ecuador. It is a peculiar member of the genus to say the least. 

One of the most remarkable features of this plant are its flowers. Unlike its multi-petaled cousins, this species stands out in producing a single large petal, which is unique for not only the genus, but the whole family as well. The petal is quite large and resembles a bright yellow roof covering the anthers and stigma. At the base of the flower sits the nectar chamber. The body of the plant consists of a vine that has been observed to grow upwards of 6 meters up into the canopy.

Flowering in this species occurs at night. Their large size, irregular funnel shape, and bright yellow coloring all point to a pollination syndrome with bats. Indeed, pollen of this species has been found on the fur of at least three different bat species. Multiple observations (pictured here) of bats visiting the flowers helped to confirm. Oddly enough for a bat-pollinated plant, the flowers produce no detectable odor whatsoever. However, another aspect of its unique floral morphology is worth noting. 

The surface of the flower has an undulating appearance. Also, the sepals themselves have lots of folds and indentations, including lots of dish-shaped pockets. It is thought that these might help the flower support the weight of visiting bats. They may also have special acoustic properties that help the bats locate the flowers via echolocation. Though this must be tested before we can say for sure, other plants have converged on a similar strategy (read here and here).

As it stands currently, Passiflora unipetala is endemic to only a couple high elevation cloud forests in northern Ecuador. It has only ever been found at two locations and sadly a landslide wiped out the type specimen from which the species description was made. As such, its introduction to the world came complete with a spot on the IUCN Redlist as critically endangered. Luckily, the two localities in which this species has been found are located on privately protected properties. Let's just hope more populations are discovered in the not-too-distant future.

Photo Credits: [1] 

Further Reading: [1]

On the Wood Rose and its Bats

New Zealand has some weird nature. It is amazing to see what an island free of any major terrestrial predators can produce. Unfortunately, ever since humans found their way to this unique island, the ecology has suffered. One of the most unique plant and animal interactions in the world can be found on this archipelago but for how much longer is the question.

The story starts with a species of bat. In fact, this bat is New Zealand's only native terrestrial mammal. That's right, I said terrestrial. The New Zealand lesser short-tailed bat spends roughly 40% of its time foraging for insects on the ground. It has lots of specialized adaptations that I won't go into here but the cool part is they forage in packs, stirring up insects from the leaf litter until they reach a level of feeding frenzy that I thought was only reserved for sharks or piranhas. Along with using echo location, they also have a highly developed sense of smell. This is important for our second player in this forest floor drama.

Enter Dactylanthus taylorii, the wood rose. This plant is not a rose at all but rather a member of the tropical family Balanophoraceae. More importantly, it is parasitic. It produces no chlorophyll and lives most of its life wrapped around the roots of its host tree underground. Every once in a while a small patch of flowers break through the dirt and just barely peak above the leaf litter. This give this species it's Māori name of "pua o te reinga" or "pua reinga", which translates to "flower of the underworld." The flowers emit a musky, sweet smell that attracts these ground foraging bats. The bats are one of the only pollinators left on the island. They sniff out the flowers and dine on the nectar, all the while being dusted with pollen. Recently, it has been found that New Zealand's giant ground parrot, the kakapo, is also believed to have been a pollinator of this plant. Sadly, today the kakapo exists solely on one small island of the New Zealand archipelago.

Both the wood rose and the New Zealand lesser short-tailed bat are considered at risk for extinction. When modern man came to these islands they brought with them the general suite of mammalian invasives like rats, mongoose, cats, and pigs, which are exacting a major toll on the local ecology. The plants and animals native to New Zealand have not shared an evolutionary history with such aggressive mammalian invaders and thus have no adaptations for coping with their sudden presence. The future of the wood rose, the New Zealand lesser short-tailed bat, and the kakapo, along with many other uniquely New Zealand species are for now uncertain.

Photo Credits: Joseph Dalton Hooker (1859) and Nga Manu Nature Reserve (http://www.ngamanu.co.nz/)

Further Reading:

http://bit.ly/2bBw8FT

http://bit.ly/2bKRY90

http://bit.ly/2bKpxfE