How Fungus Gnats Maintain Jack-in-the-pulpits

There are a variety of ways that the boundaries between species are maintained in nature. Among plants, some of the best studied examples include geographic distances, differences in flowering phenology, and pollinator specificity. The ability of pollinators to maintain species boundaries is of particular interest to scientists as it provides excellent examples of how multiple species can coexist in a given area without hybridizing. I recent study based out of Japan aimed to investigate pollinator specificity among fungus gnats and five species of Jack-in-the-pulpit (Arisaema spp.) and found that pollinator isolation is indeed a very strong force in maintaining species identity among these aroids, especially in the wake of forest disturbance.

Fungus gnats are the bane of many a houseplant grower. However, in nature, they play many important ecological roles. Pollination is one of the most underappreciated of these roles. Though woefully understudied compared to other pollination systems, scientific appreciation and understanding of fungus gnat pollination is growing. Studying such pollination systems is not an easy task. Fungus gnats are small and their behavior can be very difficult to observe in the wild. Luckily, Jack-in-the-pulpits often hold floral visitors captive for a period of time, allowing more opportunities for data collection.

By studying the number and identity of floral visitors among 5 species of Jack-in-the-pulpit native to Japan, researchers were able to paint a very interesting picture of pollinator specificity. It turns out, there is very little overlap among which fungus gnats visit which Jack-in-the-pulpit species. Though researchers did not analyze what exactly attracts a particular species of fungus gnat to a particular species of Jack-in-the-pulpit, evidence from other systems suggests it has something to do with scent.

Like many of their aroid cousins, Jack-in-the-pulpits produce complex scent cues that can mimicking everything from a potential food source to a nice place to mate and lay eggs. Fooled by these scents, pollinators investigate the blooms, picking up and (hopefully) depositing pollen in the process. One of the great benefits of pollinator specificity is that it greatly increases the chances that pollen will end up on a member of the same species, thus reducing the chances of wasted pollen or hybridization.

Still, this is not to say that fungus gnats are solely responsible for maintaining boundaries among these 5 Jack-in-the-pulpit species. Indeed, geography and flowering time also play a role. Under ideal conditions, each of the 5 Jack-in-the-pulpit species they studied tend to grow in different habitats. Some prefer lowland forests whereas others prefer growing at higher elevations. Similarly, each species tends to flower at different times, which means fungus gnats have few other options but to visit those blooms. However, such barriers quickly break down when these habitats are disturbed.

Forest degradation and logging can suddenly force many plant species with different habitat preferences into close proximity with one another. Moreover, some stressed plants will begin to flower at different times, increasing the overlap between blooming periods and potentially allowing more hybridization to occur if their pollinators begin visiting members of other species. This is where the strength of fungus gnat fidelity comes into play. By examining different Jack-in-the-pulpit species flowering in close proximity to one another, the team was able to show that fungus gnats that prefer or even specialize on one species of Jack-in-the-pulpit are not very likely to visit the inflorescence of a different species. Thanks to these preferences, it appears that, thanks to their fungus gnat partners, these Jack-in-the-pulpit species can continue to maintain species boundaries even in the face of disturbance.

All of this is not to say that disturbance can’t still affect species boundaries among these plants. The researchers were quick to note that forest disturbances affect more than just the plants. When a forest is logged or experiences too much pressure from over-abundant herbivores such as deer, the forest floor dries out a lot quicker. Because fungus gnats require high humidity and soil moisture to survive and reproduce, a drying forest can severely impact fungus gnat diversity. If the number of fungus gnat species declines, there is a strong change that these specific plant-pollinator interactions can begin to break down. It is hard to say what affect this could have on these Jack-in-the-pulpit species but a lack of pollinators is rarely a good thing. Certainly more research is needed.

Photo Credit: [1]

Further Reading: [1]

My New Book Has Arrived!

2033486357.jpg

The time has finally come! In Defense of Plants: An Exploration into the Wonder of Plants is now in stores. I thank everyone who pre-ordered a copy of the book. They should be on their way! I still can’t believe this is a reality. I always knew I wanted to write a book and I am eternally grateful to Mango Publishing for giving me this opportunity.

In Defense of Plants is a celebration of plants for the sake of plants. There is no denying that plants are extremely useful to humanity in many ways, but that isn’t why this exist. Plants are living, breathing, self-replicating organisms that are fighting for survival just like the rest of life on Earth. And, thanks to their sessile habit, they are doing so in remarkable and sometimes alien ways.

One of the best illustrations of this can be found in Chapter 3 of my new book: “The Wild World of Plant Sex.” Whereas most of us will have a passing familiarity with the concept of pollination, we have only really scratched the surface of the myriad ways plants have figured out how to have sex. Some plants go the familiar rout, offering pollen and nectar to floral visitors in hopes that they will exchange their gametes with another flower of the same species.

Others have evolved trickier means to get the job done. Some fool their pollinators into thinking they are about to get a free meal using parts of their anatomy such as fake anthers or by offering nectar spurs that don’t actually produce nectar. Some plants even pretend to smell like dying bees to lure in scavenging flies. Still others bypass food stimuli altogether and instead smell like receptive female insects in hopes that sex-crazed males won’t know the difference.

Pollination isn’t just for flowering plants either. In In Defense of Plants I also discuss some of the novel ways that mosses have converged on a pollination-like strategy by co-opting tiny invertebrates that thrive in the humid microclimates produced by the dense, leafy stems of moss colonies.

This is just a taste of what is printed on the pages of my new book. I really hope you will consider picking up a copy. To those that already have, I hope you enjoy the read when it arrives! Thank you again for support In Defense of Plants. You are helping keep these operations up and running, allowing me to continue to bring quality, scientifically accurate botanical content to the world. Thank you from the bottom of my heart.

Click here if you would like to order a copy!

You can also purchase a copy directly from the publisher

Buzzing Bees Make Evening Primrose Flowers Sweeter

Photo by Guy Haimovitch licensed under CC BY-ND 2.0.

Photo by Guy Haimovitch licensed under CC BY-ND 2.0.

Plants, like all living organisms, must be able to sense and respond to their environment. The more we look at these sessile organisms, the more we realize that plants are far from static in their day to day lives. Recent evidence even suggests that some plants may be able to “hear” their pollinators and react accordingly.

I place the word “hear” in quotes because I want to make sure that we are not talking about hearing in an animalistic sense. Plants do not have ears, a nervous system, or anything like a central processing unit to make sense of such stimuli. What they do have are mechanoreceptors that can sense vibrations and those are what are likely at work in this example.

The beach evening primrose (Oenothera drummondii) is native to southeastern North America. It is pollinated by bees during the day and by moths at night. Like most members of its genus, O. drummondii produces relatively large, showy flowers. That doesn’t mean it steals all of the attention though. Competition for pollinators can be stiff among flowering plants. To sweeten the deal a bit, O. drummondii also produces a fair amount of nectar.

Nectar is costly for plants to produce and maintain. Not only does it take water and carbohydrates away from the rest of the plant, it also puts the reproductive structures at risk of degradation by microbes feeding on sugars as well as nectar thieves who end up drinking the nectar without pollinating the flower. It stands to reason that a plant that can modulate the quality of its nectar reward in response to pollinator availability could potentially increase its fitness. If the plant doesn’t always have to present sugar-rich nectar then why bother? It appears that selective nectar production is exactly the strategy O. drummondii employs.

Photo by Yu-Ju Chang licensed under CC BY-ND 2.0.

Photo by Yu-Ju Chang licensed under CC BY-ND 2.0.

Researchers have discovered that individual O. drummondii flowers can rapidly increase the sugar content of their nectar after being exposed to the sound of a visiting bee. Within 3 minutes of being exposed to playbacks of bee wings, the flowers of O. dummondii increased the sugar content of their nectar by 20%. What’s more, flowers that had sensed the vibrations and increased their sugar content were more likely to be visited by bees. This is because bees are really good at sensing the sugar content of nectar.

This is pretty remarkable. Not only does this enable the plant to respond to the availability of pollinators and reduce the chances of nectar spoilage and theft, it significantly increases their chances of pollination. The fact that the response is so rapid (~3 mins) likely stems from the foraging habits of bees, who prefer to limit the amount of time between floral visits. Thus, the faster the plant can respond, the more likely that bees are willing to stick around and visit more flowers.

In terms of a mechanism, researchers believe the flower itself is the main sensory organ involved in the response. As mentioned, plants do produce mechanoreceptor proteins, which can sense physical vibrations. The presence of these proteins within the petals likely plays a role in sensing bee vibrations. Moreover, the bowl-shape of the flower itself may be under some selective pressures that favor the ability of the flower to sense its pollinators. More work is needed to better understand exactly how the signal pathways play out. Also, the question remains as to how wide spread this phenomenon is and how it differs between different plants and floral shapes.

Photo Credits: [1] [2]

Further Reading: [1]


Bees Bite Leaves to Induce Flowering

Photo by Ivar Leidus licensed under CC BY-ND 2.0.

Photo by Ivar Leidus licensed under CC BY-ND 2.0.

Imagine spending all winter sleeping underground, living off of the energy reserves you accumulated the previous year. By the time spring arrived and you started waking up, your need to eat would be paramount to all other drives. Such is the case for emerging queen bumblebees. Food in the form of nectar and pollen is their top priority if they are to survive long enough to start building their own colony, but flowers can be hard to come by during those first few weeks of spring.

Spring can be very unpredictable. If bees emerge from their slumber too early or too late, they can miss the flowering period of the plants they rely on for food. By the same token, the plants themselves then miss out on important pollination services. Mismatches like this are becoming more common as climate change continues to accelerate. However, not all bees are helpless if they emerge onto a landscape devoid of flowers. It turns out that, with a little nibble, some bees are able to coax certain plants into flowering.

Over a series of experiments, scientists were able to demonstrate that at least three species of bumblebee (Bombus terrestris, B. lapidarius, and B. lucorum) were able to induce early flowering in tomatoes (Solanum lycopersicum) and mustards (Brassica nigra) simply by nibbling on their leaves. The queens would land on the leaf and make a series of small holes with their mandibles before flying off. The bees did not appear to be feeding on any of the sap, nor were they carrying chunks of leaf when they flew away. Amazingly, the act of nibbling on the leaves in each experiment resulted in earlier flowering times across both species of plant.

(A) Sequential images of a worker penetrating a leaf with its proboscis. (B) A worker cutting into a leaf with its mandibles. (C) Characteristic bee-inflicted damage. [SOURCE]

(A) Sequential images of a worker penetrating a leaf with its proboscis. (B) A worker cutting into a leaf with its mandibles. (C) Characteristic bee-inflicted damage. [SOURCE]

The results were not minor either. Flowers on bee-nibbled plants were produced an average of 30 days earlier than non-nibbled plants. Amazingly, when scientists tried to simulate bee nibbles using tweezers and knives, they were only able to coax flowering an average of 8 days earlier than non-damaged plants. What this means is that there is something about the bite of a bee that sends a signal to the plant to start flowering. Perhaps there’s a chemical cue in the bee’s saliva. Indeed, this is not unheard of in the plant kingdom. Some trees have shown to respond to the detection of deer saliva, ramping up defense compounds in their leaves only once they have detected deer. More work is needed before we can say for sure.

Through a complex series of experimental trials, scientists were also able to demonstrate that this behavior was the result of pollen limitation rather than nectar. As pollen availability increased both artificially (by adding already flowering plants) or naturally (as time wore on, more plants came into bloom), the leaf biting behavior declined. Such was not the case when only nectar was available. Pollen is a protein-rich food source for bees and is especially important for their developing larvae. By inducing plants to flower early, the bees are ensuring that there will be a ready supply of pollen when they and their developing larvae need it the most.

Considering the role bees play in pollination of plants like tomatoes and mustards, it is likely that this interaction benefits both players to some degree; bees are able to coax floral resources much sooner than they would normally become available while the plants are flowering when effective pollinators are present in the area. These exciting results open yet another window into the multitude of ways in which plants and their pollinators interact. Given that plants have been known to skew the caste systems in eusocial bees, it should come as no surprise to learn that some bees have a few tricks up their sleeves as well.

Photo Credits: [1] [2]

Further Reading: [1]

Opossum Pollination of a Peculiar Parasite

scobalium.JPG

Floral traits can provide us with insights into the types of pollinators most suited for the job. For many flowering plants, the relationship is relatively easy to understand, but check out the flowers of Scybalium fungiforme. You would be completely excused for not even realizing that these bizarre structures belonged to a plant. The anatomy of those flowers would leave most of asking “what on Earth do they attract?” The answer to this are opossums!

Scybalium fungiforme hails from a peculiar family of parasitic plants called Balanophoraceae and is native to the Atlantic forests of Brazil. Members of this family can be found in tropical regions around the globe and all of them are obligate root holoparasites. Essentially this means that all one ever sees of these plants are their strange flowers. The rest of the plant lives within the vascular system of a host plant’s roots.

The adorable big-eared opossums (Didelphis aurita).

The adorable big-eared opossums (Didelphis aurita).

Scybalium fungiforme is particularly strange in that its flowers are covered in scale-like bracts. As such, accessing the flowers would be difficult for most animals. Because its strange blooms superficially resemble some marsupial and rodent pollinated Proteaceae in Australian and South Africa, predictions of a non-flying mammal pollination syndrome were about the only explanations that made sense. Now, with the help of night vision cameras, this prediction has been vindicated.

They key to this unique pollination syndrome lies in those bracts and an interesting aspect of opossum anatomy. Until the scale-like bracts are removed, not much is able to access the floral parts inside. Luckily big-eared opossums (Didelphis aurita) come equipped with opposable toes on their back feet. Upon locating the flowers of S. fungiforme, the opossum uses its back feet to remove the bracts. This unveils a bounty of nectar within. As the opossum feeds, its furry little snout gets covered in pollen. When the opossum visits subsequent flowers throughout the night, pollination is achieved.

Floral visitors of Scybalium fungiforme. b) The big-eared opossum, Didelphis aurita drinking nectar on a plant with five inflorescences (one male and four females). c) The montane grass mouse, Akodon montensis, visiting a plant with about 10 inflore…

Floral visitors of Scybalium fungiforme. b) The big-eared opossum, Didelphis aurita drinking nectar on a plant with five inflorescences (one male and four females). c) The montane grass mouse, Akodon montensis, visiting a plant with about 10 inflorescences and drinking nectar on a female one. d) The Violet-capped Woodnymph hummingbird, Thalurania glaucopis visiting a male and e) a female inflorescence. f) detail of an A. angulata wasp manipulating a male flower to eat pollen. g) Agelaia angulate visiting a female inflorescence with the head inserted among flowers to reach the nectar secreted in the inflorescence receptaculum.

Interestingly, activity doesn’t end when the opossums are done. Enough nectar often remains by the next day that a suite of other animals come to pay a visit to these strange blooms. Day time visitation of S. fungiforme consisted largely of wasps, bees, and even a mouse or two. Researchers were also lucky enough to witness Violet-capped Woodnymph hummingbirds (Thalurania glaucopis) repeatedly visit the flowers for a sip of nectar. It would appear that although the main pollinators of this strange parasite are opossums, the removal of the bracts opens up the flowers for plenty of secondary pollinators as well.

Though this is by no means the only plant to be pollinated by non-flying mammals, this pollination syndrome certainly broadens our understanding of the evolution of pollination syndromes.

Photo Credits: [1] [2] [3]

Further Reading: [1]

How a cactus from the Andes may be using hairs to attract its bat pollinators

Plants go to great lengths to attract pollinators. From brightly colored flowers to alluring scents and even some sexual deception, there seems to be no end to what plants will do for sex. Recently, research on the pollination of a species of cactus endemic to the Ecuadorian Andes suggests that even plant hairs can be co-opted for pollinator attraction.

Espostoa frutescens is a wonderful columnar cactus that grows from 1,600 ft (487 m) to 6,600 ft (2011 m) in the Ecuadorean Andes. Like many other high elevation cacti, this species is covered in a dense layer of hairy trichomes. These hairs serve an important function in these mountains by protecting the body of the plant from excessive heat, cold, wind, and UV radiation. Espostoa frutescens takes this a step further when it comes time to flower. It is one of those species that produces a dense layer of hairs around its floral buds called a cephalium. Cacti cephalia are thought to have evolved as a means of protecting developing flowers and fruits from the outside elements. What scientists have now discovered is that, at least for some cacti, the cephalium may also serve an important role in attracting bats.

Bats are famous for their use of echolocation. Because they mainly fly at night, bats rely on sound and scent, rather than sight to find food. More and more we are realizing that a lot of plants have taken advantage of this by producing structures that reflect bat sonar in such a way that makes them more appealing to bats. Some plants, like Mucuna holtonii and Marcgravia evenia, do this for pollination. Others, like Nepenthes hemsleyana, do this to obtain a nitrogen-rich meal.

Espostoa frutescens apparently differs from these examples in that its not about reflecting bat sonar, but rather absorbing it at specific frequencies. Close examination of the hairs that comprise the E. frutescens cephalium revealed that they were extremely well adapted for absorbing ultrasonic frequencies in the 90 kHz range. This may seem arbitrary until you look at who exactly pollinates this cactus.

The main pollinator for E. frutescens is a species of bat known as Geoffroy’s tailless bat (Anoura geoffroyi). It turns out that Geoffroy’s tailless bat happens to echolocate at a frequencies right around that 90 kHz range. Whereas the rest of the body of the cactus reflects plenty of sound, bat calls reaching the cephalium of E. frutescens bounced back an average of 14 decibels quieter.

Essentially, the area of floral reward on this species of cactus presents a much quieter surface than the rest of the plant itself. It is very possible that this functions as a sort of calling card for Geoffroy’s tailless bats looking for their next meal. This makes sense from a communication standpoint in that it not only saves the bats valuable foraging time, it also increases the chances of cross pollination for the cactus. To obtain enough energy from flowers, bats must travel great distances. Anything that helps them locate a meal faster will increase visitation to that flower. By changing the way in which the flowers “appear” to echolocating bats, the cacti thus increase the amount of visitation from bats, which brings pollen in from cacti located over the bats feeding range.

It is important to note that, at this point in time, research has only been able to demonstrate that the hairs surrounding E. frutescens flowers are more absorbent to the ultrasonic frequencies used by Geoffroy’s tailless bat. We still have no idea whether bats are more likely to visit flowers borne from cephalia or not. Still, this research paves the way for even more experiments on how plants like E. frutescens may be “communicating” with pollinators like bats.

Photo by Merlin Tuttle’s Bat Conservation. Please Consider supporting this incredible conservation group!

Further Reading: [1]

Rodents as Pollinators

Leucospermum arenarium in the field and one of its pollinators, Gerbillurus paeba, feeding on flowers. (A) Pollen presenter contact on G. paeba. (B) G. paeba foraging on L. arenarium [Source]

Leucospermum arenarium in the field and one of its pollinators, Gerbillurus paeba, feeding on flowers. (A) Pollen presenter contact on G. paeba. (B) G. paeba foraging on L. arenarium [Source]

It may come as a surprise to some that small mammals such as rodents, shrews, and even marsupials have been coopted by plants for pollination services. Far from being occasional evolutionary oddities, many plants have coopted small furry critters for their reproductive needs. Some of the best illustrations of this phenomenon occur in the Protea family (Proteaceae).

Protea nana. Photo by SAplants licensed under CC BY-SA 4.0

Protea nana. Photo by SAplants licensed under CC BY-SA 4.0

The various members of Proteaceae are probably best known for their bizarre floral displays. Indeed, they are most often encountered outside of their native habitats as outlandish additions to the cut flower industry. Superficial interest in beauty aside, the floral structure of the various protea genera and species is complex to say the least. They are well adapted to ensure cross pollination regardless of what the inflorescence attracts. Most notable is the fact that pollen doesn’t stay on the anthers. Instead, it is deposited on the tip of a highly modified style, which is referred to as the pollen presenter. Usually these structures remain closed until some visiting animal triggers their release.

The inconspicuous floral display of Protea cordata. Photo by SAplants licensed under CC BY-SA 4.0

The inconspicuous floral display of Protea cordata. Photo by SAplants licensed under CC BY-SA 4.0

Although birds and insects have taken up a majority of the pollination needs of this family, small mammals have entered into the equation on multiple occasions. Pollination by rodents, shrews, and marsupials is collectively referred to as therophilly and it appears to be quite a successful strategy at that. Therophilous pollination has arisen in more than one genera within Proteaceae.

A therophilous pollination syndrome appears to come complete with a host of unique morphological characters aimed at keeping valuable pollen and nectar away from birds and insects. The inflorescences of therophilous species like Protea nana, P. cordata, and Leucospermum arenarium are usually tucked deep inside the branches of these bushes, often at or near ground level. They are also quite robust and sturdy in nature, which is thought to be an adaptation to avoid damage incurred by the teeth of hungry mammals. The inflorescences of therophilous proteas also tend to have brightly colored or even shiny flowers surrounded by inconspicuous brown involucral bracts.

(C) Flowering L. arenarium with dense, mat-forming inflorescences. (D) Geoflorous inflorescences. (E) Pendulous inflorescences above ground level. [Source]

(C) Flowering L. arenarium with dense, mat-forming inflorescences. (D) Geoflorous inflorescences. (E) Pendulous inflorescences above ground level. [Source]

Contrasted against bird pollinated proteas, these inflorescences can seem rather drab but that is because small mammals like rodents and shrews are drawn in by another sense - smell. Therophilous proteas tend to produce inflorescences with strong musty or yeasty odors. They also produce copious amounts of sugar-rich, syrupy nectar. Small mammals, after all, need to take in a lot of calories throughout their waking hours and it appears that proteas use that to their advantage.

A small mouse pollinating Protea nana

A small mouse pollinating Protea nana

As a rodent or shrew slinks in to take a drink, its head gets completely covered in pollen. In fact, they become so dusted with pollen that, before small, easy to hide trail cameras became affordable, pollen loads in the feces of rodents were the main clue that these plants were attracting something other than birds or insects. What’s more, the flowering period of many of these therophilous proteas occurs in the spring, right around the time when many small mammals go into breeding mode. Its during this time that small mammals need all of the energy they can get.

As odd as it may seem, rodent pollination appears to be a successful strategy for a considerable amount of protea species. The proteas aren’t alone either. Other plants appear to have evolved therophilous pollination as well. Nature, after all, works with what it has available and small mammals like rodents make up a considerable portion of regional faunas. With that in mind, it is no wonder that more plants have not converged on a similar strategy. Likely many have, we just need to take the time to sit down and observe.

Photo Credits: [1] [2] [3] [4] [5] [6] [7]

Further Reading: [1] [2] [3] [4] [5]



Toxic Nectar

35523565_2235120153181504_7723861579292213248_o.jpg

I was introduced to the concept of toxic nectar thanks to a species of shrub quite familiar to anyone who has spent time in the Appalachian Mountains. Locals will tell you to never place honeybee hives near a patch of rosebay (Rhododendron maximum) for fear of so-called "mad honey." Needless to say, the concept intrigued me.

A quick internet search revealed that this is not a new phenomenon either. Humans have known about toxic nectar for thousands of years. In fact, honey made from feeding bees on species like Rhododendron luteum and R. ponticum has been used more than once during times of war. Hives containing toxic honey would be placed along known routs of Roman soldiers and, after consuming the seemingly innocuous treat, the soldiers would collapse into a stupor only to be slaughtered by armies lying in wait.

Rhododendron luteum. Photo by Chrumps licensed under CC BY 3.0

Rhododendron luteum. Photo by Chrumps licensed under CC BY 3.0

The presence of toxic nectar seems quite confusing. The primary function of nectar is to serve as a reward for pollinators after all. Why on Earth would a plant pump potentially harmful substances into its flowers?

It is worth mentioning at this point that the Rhododendrons aren't alone. A multitude of plant species produce toxic nectar. The chemicals that make them toxic, though poorly understood, vary almost as much as the plants that make them. Although there have been repeated investigations into this phenomenon, the exact reason(s) remain elusive to this day. Still, research has drummed up some interesting data and many great hypotheses aimed at explaining the patterns.

Catalpa nectar has been shown to deter some ants and butterflies but not large bees. Photo by Le.Loup.Gris licensed under CC BY-SA 3.0

Catalpa nectar has been shown to deter some ants and butterflies but not large bees. Photo by Le.Loup.Gris licensed under CC BY-SA 3.0

The earliest investigations into toxic nectar gave birth to the pollinator fidelity hypothesis. Researchers realized that meany bees appear to be less sensitive to alkaloids in nectar than are some Lepidopterans. This led to speculation that perhaps some plants pump toxic compounds into their nectar to deter inefficient pollinators, leading to more specialization among pollinating insects that can handle the toxins.

Another hypothesis is the nectar robber hypothesis. This hypothesis is quite similar to the pollinator fidelity hypothesis except that it extends to all organisms that could potentially rob nectar from a flower without providing any pollination services. As such, it is a matter of plant defense.

The nectar of Cyrilla racemiflora is thought to be toxic to some bees. Photo by Koala:Bear licensed under CC BY-SA 2.0

The nectar of Cyrilla racemiflora is thought to be toxic to some bees. Photo by Koala:Bear licensed under CC BY-SA 2.0

Others feel that toxic nectar may be less about pollinators or nectar robbers and more about microbial activity. Sugary nectar can be a breeding ground for microbes and it is possible that plants pump toxic compounds into their nectar to keep it "fresh." If this is the case, the antimicrobial benefits could outweigh the cost to pollinators that may be harmed or even deterred by the toxic compounds.

Finally, it could be that toxic nectar may have no benefit to the plant whatsoever. Perhaps toxic nectar is simply the result of selection for defense compounds elsewhere in the plant and therefore is expressed in the nectar as a result of pleiotropy. If this is the case then toxic nectar might not be under as strong selection pressures as is overall defense against herbivores. If so, the plants may not be able to control which compounds eventually end up in their nectar. Provided defense against herbivores outweighs any costs imposed by toxic nectar then plants may not have the ability to evolve away from such traits.

Where Spathodea campanulata is invasive, its nectar causes increased mortality in native bee hives. Photo by mauro halpern licensed under CC BY 2.0

Where Spathodea campanulata is invasive, its nectar causes increased mortality in native bee hives. Photo by mauro halpern licensed under CC BY 2.0

So, where does the science land us with these hypotheses? Do the data support any of these theories? This is where things get cloudy. Despite plenty of interest, evidence in support of the various hypotheses is scant. Some experiments have shown that indeed, when given a choice, some bees prefer non-toxic to toxic nectar. Also, toxic nectar appears to dissuade some ants from visiting flowers, however, just as many experiments have demonstrated no discernible effect on bees or ants. What's more, at least one investigation found that the amount of toxic compounds within the nectar of certain species varies significantly from population to population. What this means for pollination is anyone's' guess.

It is worth noting that most of the pollination-related hypotheses about toxic nectar have been tested using honeybees. Because they are generalist pollinators, there could be something to be said about toxic nectar deterring generalist pollinators in favor of specialist pollinators. Still, these experiments have largely been done in regions where honeybees are not native and therefore do not represent natural conditions.

Simply put, it is still too early to say whether toxic nectar is adaptive or not. It could very well be that it does not impose enough of a negative effect on plant fitness to evolve away from. More work is certainly needed. So, if you are someone looking for an excellent thesis project, here is a great opportunity. In the mean time, do yourself a favor and don't eat any mad honey.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4] [5] [6]

 

 

Early Spring Ephemerals

Join us as we go in search of some of the earliest spring ephemerals. In this episode we come face to face with the aptly named harbinger of spring (Erigenia bulbosa) and the lovely Hepatica nobilis.

Producer, Editor, Camera: Grant Czadzeck (http://www.grantczadzeck.com)

Music by
Artist: Stranger In My Town
Track: Air
https://strangerinmytown.bandcamp.com/

Do Yeasts Aid Pollination For the Stinking Hellebore?

Photo by Mark Gurney licensed under CC BY-NC-SA 2.0

Photo by Mark Gurney licensed under CC BY-NC-SA 2.0

Whether they are growing in their native habitat or in some far away garden, Hellebores are some of the earliest plants to bloom in the spring. Hellebore flowers can often be seen blooming long before the snow has melted away. All early blooming plant species are faced with the challenge of attracting pollinators. Though the competition for insect attention is minimal among these early bloomers, only the hardiest insects are out and about on cold, dreary days. It stands to reason then that anything that can entice a potential pollinator would be of great benefit for a plant.

That is why the presence of yeast in the nectar of at least one species of Hellebore has attracted the attention of scientists. The species in question is known scientifically as Helleborus foetidus. The lack of appeal in its binomial is nothing compared to its various common names. One can often find H. foetidus for sale under names like the "stinking hellebore" or worse, "dungwort." All of these have to do with the unpleasant aroma given off by its flowers and bruised foliage. Surprisingly, that is not the topic of this post.

Photo by Bernd Haynold licensed under CC BY-SA 3.0

Photo by Bernd Haynold licensed under CC BY-SA 3.0

What is more intriguing about the flowers of H. foetidus is that the nectar produced by its smelly green flowers harbors dense colonies of yeast. Yeasts are everywhere on this planet and despite their economic importance, little is known about how they function in nature. For instance, what the heck are these yeast colonies doing in the nectar of this odd Hellebore?

To test this, two researchers from the Spanish National Research Council manipulated yeast colonies within the flowers to see what might be happening. It turns out, yeast in the nectar of H. foetidus actually warms the flowers. As the yeast feed on the sugars within the nectar, their metabolic activity can raise the temperature of the flowers upwards of 2 °C above the ambient. As far as we know, the only other ways in which floral heating has been achieved is either via specific metabolic processes within the floral tissues or by direct heating from the sun. 

In heating the flowers, these yeast colonies may be having serious impacts on the reproductive success of H. foetidus. For starters, these plants are most at home under the forest canopies of central and western Europe. What's more, many populations find themselves growing in the dense shade of evergreens. This completely rules out the ability to utilize solar energy to heat blooms. Additionally, floral heat can mean more visits by potential pollinators. Experiments have shown that bees preferentially visit flowers that are slightly warmer than ambient temperatures. Even the flowers themselves can benefit from that heat. Warmer flowers have higher pollination rates and better seed set.

Bombus terrestris was one of the most common floral visitors of Helleborus foetidus. Photo by Vera Buhl licensed under CC BY-SA 3.0

Bombus terrestris was one of the most common floral visitors of Helleborus foetidus. Photo by Vera Buhl licensed under CC BY-SA 3.0

Yeast colonies also have their downsides. The heat generated by the yeast comes from the digestion of sugars. Indeed, nectar housing yeast colonies had drastically reduced sugar loads than nectar without yeast. This has the potential to offset many of the benefits of floral warming in large part because bees are good at discriminating. Bees are visiting these blooms as a food source and by diminishing the sugar content of the nectar, the yeast may be turning bees off to this potential source. The question then becomes, do bees prefer heat over sugar-rich food? The authors think there might be a trade-off, with bees preferring heated flowers on colder days and sugar-rich flowers on warmer days.

Helleborus foetidus flowering before the snow has had a chance to melt!

Helleborus foetidus flowering before the snow has had a chance to melt!

Though the authors found evidence for heating, they did not test for pollinator preference. All we know at this point is that yeast in the nectar significantly warms H. foetidus flowers. Since this piece was originally published, more attention has been paid to the benefits of the heat generated from yeast. Interestingly, researchers found that pollen tube formation was higher for H. foetidus flowers that experienced heat earlier in the season but not for those that experienced heat later on. This response, however, was not due to the warming directly. Instead, it had more to do with bee preference.

As it turns out, bumblebees do in fact prefer to visit heated flowers but their preference is limited to the early periods of flowering when ambient temperatures are still quite low. More bumblebees visiting heated flowers in the early spring equated to more pollen being deposited on the stigma, which in turn led to an increase in pollen tube formation and higher seed set. Later on in the season, when ambient temperatures increased a bit, this positive effect dropped off as bees apparently spent more time foraging elsewhere.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3]

An Endangered Iris With An Intriguing Pollination Syndrome

iris1.JPG

The Golan iris (Iris hermona) is a member of the Oncocyclus section, an elite group of 32 Iris species native to the Fertile Crescent region of southwestern Asia. They are some of the showiest irises on the planet. Sadly, like many others in this section, the Golan iris is in real danger of going extinct.

The Golan iris has a rather limited distribution. Despite being named in honor of Mt. Hermon, it is restricted to the Golan Heights region of northern Israel and southwestern Syria. Part of the confusion stems from the fact that the Golan iris has suffered from a bit of taxonomic uncertainty ever since it was discovered. It is similar in appearance to both I. westii and I. bismarckiana with which it is frequently confused. In fact, some authors still consider I. hermona to be a variety of I. bismarckiana. This has led to some serious issues when trying to assess population numbers. Despite the confusion, there are some important anatomical differences between these plants, including the morphology of their rhizomes and the development of their leaves. Regardless, if these plants are in fact different species, it means their respective numbers in the wild decrease dramatically. 

Photo by Dr. Avishai Teicher Pikiwiki Israel licensed under CC BY 2.5

Photo by Dr. Avishai Teicher Pikiwiki Israel licensed under CC BY 2.5

Like other members of the Oncocyclus group, the Golan iris exhibits an intriguing pollination syndrome with a group of bees in the genus Eucera. Their large, showy flowers may look like a boon for pollinators, however, close observation tells a different story. The Golan iris and its relatives receive surprisingly little attention from most of the potential pollinators in this region.

One reason for their lack of popularity has to do with the rewards (or lack thereof) they offer potential visitors. These irises produce no nectar and very little pollen. Because of this and their showy appearance, most pollinators quickly learn that these plants are not worth the effort. Instead, the only insects that ever pay these large blossoms any attention are male Eucerine bees. These bees aren't looking for food or fragrance, however. Instead, they are looking for a place to rest. 

A Eucerine bee visiting a nectar source. Photo by Gideon Pisanty (Gidip) גדעון פיזנטי • CC BY 3.0

A Eucerine bee visiting a nectar source. Photo by Gideon Pisanty (Gidip) גדעון פיזנטי • CC BY 3.0

The Oncocyclus irises cannot self pollinate, which makes studying potential pollinators a bit easier. During a 5 year period, researchers noted that male Eucerine bees were the only insects that regularly visited the flowers and only after their visits did the plants set seed. The bees would arrive at the flowers around dusk and poke around until they found one to their liking. At that point they would crawl down into the floral tube and would not leave again until morning. The anatomy of the flower is such that the bees inevitably contact stamen and stigma in the process. Their resting behavior is repeated night after night until the end of the flowering season and in this way pollination is achieved. Researchers now believe that the Golan iris and its relatives are pollinated solely by these sleeping male bees.

Sadly, the status of the Golan iris is rather bleak. As recent as the year 2000, there were an estimated 2,000 Golan irises in the wild. Today that number has been reduced to a meager 350 individuals. Though there is no single smoking gun to explain this precipitous decline, climate change, cattle grazing, poaching, and military activity have exacted a serious toll on this species. Plants are especially vulnerable during drought years. Individuals stressed by the lack of water succumb to increased pressure from insects and other pests. Vineyards have seen an uptick in Golan in recent years as well, gobbling up viable habitat in the process.

Photo by Dr. Avishai Teicher Pikiwiki Israel licensed under CC BY 2.5

Photo by Dr. Avishai Teicher Pikiwiki Israel licensed under CC BY 2.5

It is extremely tragic to note that some of the largest remaining populations of Golan irises can be found growing in active mine fields. It would seem that one of the only safe places for these endangered plants to grow are places that are extremely lethal to humans. It would seem that our propensity for violent tribalism has unwittingly led to the preservation of this species for the time being.

At the very least, some work is being done not only to understand what these plants need in order to germinate and survive, but also assess the viability of relocated plants that are threatened by human development. Attempts at transplanting individuals in the past have been met with limited success but thankfully the Oncocyclus irises have caught the eye of bulb growers around the world. By sharing information on the needs of these plants in cultivation, growers can help expand on efforts to save species like the Golan iris.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4]

 

California Bumblebee Decline Linked to Feral Honeybees

Photo by Alvesgaspar licensed under CC BY-SA 3.0

Photo by Alvesgaspar licensed under CC BY-SA 3.0

Worldwide, pollinators are having a rough go of it. Humans have altered the landscape to such a degree that many species simply can't keep up. The proverbial poster child for pollinator issues is the honeybee (Apis mellifera). As a result, countless native pollinators get the short shrift when it comes to media attention. This isn't good because outside of intense industrial agriculture, native pollinators make up the bulk of pollination services. Similarly, honeybee fandom often overshadows any potential negative effects these introduced insects might be having on native pollinators.

Long term scientific investigations are starting to paint a more nuanced picture of the impact introduced honeybees are having on native ecosystems. For instance, research based out of California is finding that honeybees are playing a big role in the decline of native bumblebee populations. What's more, these negative impacts are only made worse in the light of climate change.

Licensed under public domain

Licensed under public domain

For over 15 years, ecologist Dr. Diane Thompson has been studying bumblebee populations in central California. At no point during those early years did any of the bumblebee species she focuses on show signs of decline. In fact, they were quite common. Then, around the year 2000, feral honeybees started to establish themselves in the area. Honeybee colonies were becoming more and more numerous each and every year and that is when she started noticing changes in bumblebee behavior and numbers.

You see, honeybees are extremely successful foragers. They are generalists, which means they can visit a wide variety of flower types. As a result, they are extremely good at competing for floral resources compared to native bumblebees. Her results show that increases in the number of honeybee colonies caused not only a reduction in foraging among the native bumblebees, they also caused a reduction in bumblebee colony success. The native bumblebees simply weren't raising as many young as they were before honeybees entered the system.

Decreased rainfall cause a decline in flower densities of Scrophularia californica, a key resource for native bumblebees in this system. Photo by USFWS - Pacific Region licensed under CC BY-NC 2.0

Decreased rainfall cause a decline in flower densities of Scrophularia californica, a key resource for native bumblebees in this system. Photo by USFWS - Pacific Region licensed under CC BY-NC 2.0

Climate change is only making things worse. As drought years become not only more severe but also more intense, the amount of flowers available during the growing season also declines. With fewer flowers on the landscape, bumblebees and honeybees are forced into closer proximity for foraging and the clear winner in most foraging disputes are the tenacious honeybees. As such, bumblebees are chased off the already diminishing floral displays. By 2014, Dr. Thompson had quantified a significant decline in native bumblebee populations as a result.

It would be all too convenient to say that this research represents an isolated case. It does not. More and more research is finding that honeybees frequently out-compete native pollinators for resources such as food and nesting sites. Such effects are especially pronounced in rapidly changing ecosystems. Although honeybees are here to stay, it is important that we realize the impacts that these feral insects are having on our native ecosystems and begin to better appreciate and facilitate the services provided by our native pollinators. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3] [4]

Mt. Cuba Center Puts Nativars to the Test

Monarda Trial (1).JPG
2014-MCC-Logo.jpg

By this point, most gardeners will have undoubtedly heard about the importance of using native plants in our landscapes. Though the idea is not new, Doug Tallamy’s landmark publication “Bringing Nature Home” put native plants on the radar for more gardeners than ever. There is no debate that utilizing native plants in our landscapes offers us a chance to bring back some of the biodiversity that was lost when our homes and work places were built. And, at the end of the day, who doesn’t love the sight of a swallowtail butterfly flitting from flower to flower or a pair of warblers nesting in their Viburnum? The rise of native plants in horticulture and landscaping is truly something worth celebrating.

At the same time, however, capitalism is capitalism, and many nurseries are starting to jump on the bandwagon in alarming ways. The rise of native cultivars or “nativars” is troubling to many. Nativars are unique forms, colors, and shapes of our beloved native plants which have been selected and propagated by nurseries and plant breeders. This has led many to denounce the practice of planting nativars as a slap in the face to the concept of native gardening.

Trial Garden Event.jpg

Nativars are frequently seen as unnatural mutant versions of their wild counterparts whose use overlooks the whole point of natives in the first place. Take, for instance, the popularity of double flowered nativars. These plants have been selected for an over-production of sepals and petals that can be so dense that they preclude visitation by pollinators. Another example that will be familiar to most are the bright blue hydrangeas that have become to popular. These shrubs have been selected for producing bright, showy flowers that, depending on your soil chemistry, exhibit a stunning blue coloration. The downside here is that all of those flowers are sterile and produce no nectar or pollen for visiting insects.

It would seem that nativars are a slippery slope to yet another sterile landscape incapable of supporting biodiversity. However, anecdotes don’t equal data and that is where places like Mt. Cuba Center come in. Located in northern Delaware, Mt. Cuba is doing something quite amazing for the sake of environmentally friendly landscaping – they are putting plants to the test.

Monarda Trial (2).JPG

Mt. Cuba has been running trial garden research and experiments on native plants and their nativars for over a decade. The goal of this research is to generate and analyze data in order to help the public make better, more sustainable choices for their yards. Mt. Cuba aims to better understand and quantify the horticultural and ecological value of native plants and related nativars in order to better understand the various ecosystem services these plants provide. In collaboration with academic institutions in the region, popular nativars are established and grown under similar conditions to those experienced in the yards of your average gardener. They are monitored for years to assess their overall health, performance, and ability to support wildlife. Thanks to the help of countless volunteers, these trial gardens paint a holistic picture of each plant and related nativars that is sorely lacking from the gardening lexicon.

This is very exciting research to say the least. The data coming out of the Mt. Cuba trial gardens may both surprise and excite gardeners throughout the mid-Atlantic region of North America. For instance, their latest report looked at some of the most common Phlox varieties on the market. At the top of this list is Garden Phlox (Phlox paniculata). This lovely species is native throughout much of the eastern United States and has become quite a rockstar in the nursery trade. Over 580 cultivars and hybrids have been named to date and no doubt many more will be introduced in the future. Amazingly, many of these Phlox nativars are being developed in the Netherlands. As such, Phlox arriving in regions of the US with vastly different climates often fall victim to novel diseases they never encountered in Europe. What’s more, people often plant these nativars in hopes of attracting butterflies to their garden. Despite their popularity for attracting various lepidopterans, no one has ever tested whether or not the nativars perform as well as their native progenitor.

Phlox paniculata 'Delta Snow'

Phlox paniculata 'Delta Snow'

Starting in 2015, Mt. Cuba began trials on 66 selections and hybrids of Garden Phlox along with 28 other sun-loving types of Phlox. The plants were observed on a regular basis to see which of the nativars experienced the least amount of disease and attracted the most insects. The clear winner of these trails is a nativar known as Phlox paniculata ‘Jeana’. This particular selection was discovered growing along the Harpeth River in Tennessee and is known for having the smallest flowers of any of the Garden Phlox varieties. It also has the reputation for being rather resistant to powdery mildew. Alongside other selections such as Delta Sno’ and David, Jeana really held up to this reputation.

As far as butterflies are concerned, Jeana blew its competition out of the water. Throughout the observation period, Jeana plants received over 530 visits from butterflies whereas the second place selection, Lavelle, received 117. A graduate student at the University of Delaware is studying why exactly the various nativars of Phlox paniculata differ so much in insect visitation. Though they haven’t zeroed in on a single cause at this point, they suggest that the popularity of Jeana might actually have something to do with its small flower size. Perhaps the density of smaller flowers allows butterflies to access more nectar for less effort.

Phlox paniculata ‘Jeana’

Phlox paniculata ‘Jeana’

Monarda is another genus of North American native plants that has seen an explosion in nativars and hybrids over the last few decades. The popularity of these mints is no surprise to anyone who has spent time around them. Their inflorescence seems to be doing their best impression of a fireworks display, an attribute that isn’t lost on pollinators. These plants are popular with a wide variety of wildlife from solitary bees to voracious hummingbirds. Even after flowering, their seeds provide food for seed-eating birds and many other animals.

As with Garden Phlox, a majority of the commercial selection and hybridization of Monarda occurs in Europe. As a result, resistance to North American plant diseases is not top priority. Many of us have experienced this first hand as our beloved bee balm patch succumbs to aggressive strains of powdery mildew. Though there are many species of Monarda native to North America, most of the plants we encounter are nativars and hybrids of two species – Monarda didyma and Monarda fistulosa.

Monarda fistulosa 'Claire Grace'

Monarda fistulosa 'Claire Grace'

Again, Mt. Cuba’s trial gardens put these plants to the test. A total of 40 different Monarda selections were grown, observed, and ranked based on their overall growth and vigor, pollinator attractiveness, and disease resistance. The clear winner of these trials was a naturally-occurring form of M. fistulosa affectionately named ‘Claire Grace.’ Its floral display lasts a total of 3 weeks without waning and managed to attract over 130 visits by butterflies and moths. Though plenty of other insects such as short-tongued bees visited the flowers during the trial period, they are too small to properly access the nectar inside the flower tubes and are therefore not considered effective pollinators.

Another clear winner in terms of pollinators was possibly one of the most stunning Monarda selections in existence – Monarda didyma ‘Jacob Cline’. This tall, red-flowering nativar was a major hit with hummingbirds. During the observation period, Jacob Cline received over 270 visits from these brightly colored birds. Researchers are still trying to figure out why exactly this particular selection was such a hit but they speculate that the large flower size presents ample feeding opportunities for tenacious hummingbirds.

Monarda didyma 'Jacob Cline'

Monarda didyma 'Jacob Cline'

Claire Grace and Jacob Cline also outperformed most of the other selections in terms of disease resistance. Even in the crowded conditions experienced by plants in the trail garden, both selections faired quite well against the dreaded powdery mildew. Though they aren’t completely resistant to it, these and others did not succumb like some selections tend to do. Interestingly enough, most of the other pure species tested in the trial faired quite well against powdery mildew as well. It would appear that Mother Nature better equips these plants than European breeders.

These reports are but two of the many trials that Mt. Cuba has undertaken and there are many, many more on the way. Thanks to the hard work of staff and volunteers, Mt. Cuba is finally putting numbers behind some of our most commonly held assumptions about gardening with native plants and their cultivars. It is impressive to see a place so dedicated to making our landscapes more sustainable and environmentally friendly.

If you would like to find out more about Mt. Cuba’s trial garden as well as download your own copies of the trial garden reports, please make sure to check out https://mtcubacenter.org/research/trial-garden/

A Common Plant With An Odd Pollination Mechanism

Photo by Kerry Woods licensed under CC BY-NC-ND 2.0

Photo by Kerry Woods licensed under CC BY-NC-ND 2.0

Pollination is not an altruistic enterprise. Each party involved is trying to maximize its gains while minimizing its losses. Needless to say, cheaters abound in natural systems. As such, plants have gone to great lengths to ensure that their reproductive investments pay off in the long run. Take, for instance, the case of the fragrant water-lily (Nymphaea odorata). 

Most of us have encountered this species at some point in our lives. Those who have often remark on the splendor of their floral displays. Certainly this is not lost on pollinators either. Coupled with their aromatic scent, these aquatic plants must surely be a boon to any insect looking for pollen and nectar. Still, the flowers of the fragrant water-lily take no chances.

Close observation will reveal an interesting pattern in the blooming cycle of this water-lily. On the first day that the flowers open, only the female portions are mature. The structure itself is bowl-like in shape. Filling this stigmatic bowl is a viscous liquid. After the first day, the flowers close for the evening and reopen to reveal that the stigma is no longer receptive and instead, the anthers have matured.

Many insects will visit these floating flowers throughout the blooming period. Everything from flies, to beetles, and various sorts of bees have been recorded. Seed set in this species is pollen limited so any insect visiting a female flower must deposit pollen if reproduction is to be achieved. This is where that bowl of sticky liquid comes into play. The liquid itself is rather unassuming until you see an insect fall in.

Photo by Matthew Beziat licensed under CC BY-NC 2.0

Photo by Matthew Beziat licensed under CC BY-NC 2.0

Due to the presence of surfactants, any insect that falls into the fluid immediately sinks to the bottom. The flowers seem primed to encourage this to happen too. The flexible inner stamens that surround the bowl bend under the weight of heavier insects, thus dumping them into the liquid below. Only by observing this process under extreme magnification does all of this make sense.

The liquid within the bowl essentially washes off any pollen that a visiting insect had stuck to its body. As the pollen falls off, it drifts down to the bottom of the bowl where it contacts the receptive stigma. Thus, cross-pollination is achieved. Most of the time, insect visitors are able to crawl out without any issue. However, the occasional insect will drown within the fluid. Alas, that is no sweat off the water-lily's back. Having dropped off the pollen it was carrying, it is of little use to that flower anymore.

Once a water-lily flower has been fertilized, its stem begins to curl up like a spring. This draws the ovaries underwater where they can develop in relative safety. It also ensures that, upon maturing, the seeds are more likely to find a suitable underwater site for germination. To think that this drama plays out time and time again unbeknownst to the casual observer is something I find endlessly fascinating about the natural world.

Photo Credit: [1] [2]

Further Reading: [1] [2]

Ants As Pollinators?

Photo by Ken-ichi Ueda licensed under CC BY-NC 2.0

Photo by Ken-ichi Ueda licensed under CC BY-NC 2.0

Ants interact with plants in a variety of beneficial ways. They offer protection, they provide nutrients, they even disperse seeds! When it comes to pollination, however, plants have largely gone elsewhere. That's not to say ants don't get directly involved in the sex lives of plants. At least one plant species native to Spain has been found to be pollinated by ants. Certainly there are probably more examples of ant pollination throughout the plant kingdom, we simply have to look. For example, one possible ant-pollinated plant can be found growing on the west coast of North America.

The dwarf owl's-clover (Triphysaria pusilla) is a small annual member of the broomrape family. It really is a dwarf species, rarely exceeding a few inches in height. What it lacks in size, it makes up for in abundance. Large colonies of these species can be found growing among other low statured herbs in wetter areas like spring-fed grasslands. Their tendency to produce lots of anthocyanin pigments in their tissues means that these maroon colonies really stand out. Like other members of the family, it is a facultative hemiparasite, tapping into the roots of surrounding vegetation with its roots, stealing nutrients and water as the situation demands.

Photo by brewbooks licensed under CC BY-SA 2.0

Photo by brewbooks licensed under CC BY-SA 2.0

Flowering in the dwarf owl's-clover is rather inconspicuous. The dense flowering spikes produce minute, tubular, maroon-yellow flowers. It has been observed that, at any given point during the flowering season, only three flowers will have matured on any given plant. Two of these flowers mature their anthers first whereas the remaining flower matures its stigma. This is likely an adaptation for increasing the chances of cross pollination. 

Photo by Richard Droker licensed under CC BY-NC-ND 2.0

Photo by Richard Droker licensed under CC BY-NC-ND 2.0

Because these flowers hardly qualify as an attractive display for more commonly encountered insect pollinators, it has been hypothesized that ants are the preferred pollinator of this species. Early work even suggested that the dense leaf arrangement facilitates ant movement to and from flowers in any given colony. Although no one has yet quantified the efficacy of ants as pollinators of this species, numerous observations of ants visiting flowers and picking up pollen have been made. Famously, such a scene was filmed for the 1981 documentary "Sexual Encounters of the Floral Kind."

Whether these visits constitute effective pollination remains to be seen. It could be that the ants are nothing more than nectar and pollen thieves. What's more, many ants produce substances from specialized glands that, among other things, destroy pollen. Until someone takes the time to study this interaction, we simply do not know. Sounds like a fun research project to me! 

Photo Credits: [1] [2] [3]

Further Reading: [1]

Who Pollinates the Flame Azalea?

By and large, one of the most endearing aspects of doing research in Southern Appalachia are the myriad Ericaceous species you inevitably encounter. Throughout the growing season, their flowers paint the mountainsides in a symphony of color. One of my favorite species to encounter is the flame azalea (Rhododendron calendulaceum).

This shrubby spectacle is a common occurrence where I work and its flowers, which range from bright yellows to deep orange and even red, put on a show that lasts a couple of weeks. It's not just me who enjoys the flowers either. Countless insects can be seen flitting to and from each blossom, sucking up rich reserves of nectar and pollen. It is interesting to watch a bee visit these flowers. Their outlandishly long anthers and style seem to be mostly out of reach for these smaller pollinators.

Bees attempting to grab some pollen look outlandishly clumsy in their attempts. What's more, small insects only seem to be able to get either nectar or pollen on any given visit. Rarely if ever do they make contact with the right floral parts that would result in effective pollination. Indeed, I am not the only person to have noticed this. Despite being visited by a wide array of insect species, only large butterflies seem capable to pollinating the flame azaleas stunning blooms.

The mechanism by which this happens is quite interesting. The reason small insects do not effectively pollinate these flowers has to do with the position of the anthers and style. Sticking far out from the center of the flower, they are too widely spaced to be contacted by small insect visitors. Instead, the only insects capable to transferring pollen from anthers to stigma are large butterflies. What is most strange about this relationship is that it all hinges on the size of the butterflies wings.

Photo by Jay Williams licensed under CC BY-NC 2.0

Photo by Jay Williams licensed under CC BY-NC 2.0

Only two species of butterfly, the eastern tiger swallowtail and the orange spangled fritillary, were observed to possess the right wing size and placement to achieve effective pollination for the flame azalea (though I suspect other larger species do so as well). This is quite unique as this is the only report of wing-mediated pollen transfer in northern temperate regions. The research team that discovered this noted that pollen transfer was greatest with the eastern tiger swallowtail, which is a voracious nectar hunter during the summer months.

Despite their popularity in pollinator gardens, butterflies are often considered poor pollinators. That being said, pollen transfer via wing surfaces has been a largely overlooked mechanism of pollination. Coupled with a handful of reports from tropical regions, this recent finding suggests that we must take a closer look at plant pollinator interactions, especially for plants that produce flowers with highly exerted anthers and stigmas. As the authors of the study put it, "transfer of pollen by butterfly wings may not be a rare event."

Photo Credit: [1]

Further Reading: [1]

Three Cheers for Fungus Gnats!

Bees, butterflies, bats, and birds... Most of us are all too familiar (and thankful) for their roles as plant pollinators. However, there are some unsung heroes of this niche and one of them are the often overlooked fungus gnats.

Pollinators, for good reason, are one of the largest selective pressures on flower evolution. As flowers evolve to cater to a specific kind of pollinator, be it a bird, a bee, or even fungus gnats, we refer to it as a pollinator syndrome. I have been enchanted by the flowers of the genus Mitella ever since I stumbled across them. As you can see in the picture, they are generally saucer shaped and have snowflake-like appendages protruding from their rim. I wondered, what kind of pollinator syndrome would produce such delicate beauty?

A quick search in the literature turned up a paper from a team of botanists based out of the University of Idaho. The paper outlines work done across a wide range of genera in the Saxifragaceae family. They looked at flower morphology and, through hours of field observation, found a common theme in many species. Those with small, white, saucer-shaped flowers, such as those of Mitella pentandra, all seem to be pollinated by fungus gnats. Fungus gnats are themselves quite small and their larvae live in moist soils, feeding on fungi. As it turns out, the adults are avid pollinators of many plant species and because of this, some species, like M. pentandra, have evolved a pollinator syndrome with them.

The research team also found a strong correlation between fungus gnat flowers and habitat type. They all seemed to be tied to moist forest habitats. This is because moist forests are the only place fungus gnats can live. Plants in drier habitats rarely come into contact with fungus gnats and therefore have no selective pressures to cater to these insects.

I love it when general observations based on aesthetics lead to a deeper understanding of what is going on outside.

Photo Credit: Four Corners School of Outdoor Education (http://bit.ly/1jmNLDR)

Further Reading:
http://bit.ly/1VFiHY4

Rhizanthes lowii

Photo Credit: Ch'ien C. Lee - www.wildborneo.com.my/photo.php?f=cld1500900.jpg

Imagine hiking through the forests of Borneo and coming across this strange object. It's hairy, it's fleshy, and it smells awful. With no vegetative bits lying around, you may jump to the conclusion that this was some sort of fungus. You would be wrong. What you are looking at is the flower of a strange parasitic plant known as Rhizanthes lowii.

Rhizanthes lowii is a holoparasite. It produces no photosynthetic tissues whatsoever. In fact, aside from its bizarre flowers, its doesn't produce anything that would readily characterize it as a plant. In lieu of stems, leaves, and roots, this species lives as a network of mycelium-like cells inside the roots of their vine hosts. Only when it comes time to flower will you ever encounter this species (or any of its relatives for that matter).

The flowers are interesting structures. Their sole function, of course, is to attract their pollinators, which in this case are carrion flies. As one would imagine, the flowers add to their already meaty appearance a smell that has been likened to that of a rotting corpse. Even more peculiar, however, is the fact that these flowers produce their own heat. Using a unique metabolic pathway, the flower temperature can rise as much as 7 degrees above ambient. Even more strange is the fact that the flowers seem to be able to regulate this temperature. Instead of a dramatic spike followed by a gradual decrease in temperature, the flowers of R. lowii are able to maintain this temperature gradient throughout the flowering period.

Photo Credit: Ch'ien C. Lee - www.wildborneo.com.my/photo.php?f=cld1500900.jpg

There could be many reasons for doing this. Heat could enhance the rate of floral development. This is a likely possibility as temperature increases have been recorded during bud development. It could also be used as a way of enticing pollinators, which can use the flower to warm up. This seems unlikely given its tropical habitat. Another possibility is that it helps disperse its odor by volatilizing the smelly compounds. In a similar vein, it may improve the carrion mimicry. Certainly this may play a role, however, flies don't seem to have an issue finding carrion that has cooled to ambient temperature. Finally, it has also been suggested that the heat may improve fertilization rates. This also seems quite likely as thermoregulation has been shown to continue after the flowers have withered away.

Regardless of its true purpose, the combination of lifestyle, appearance, and heat producing properties of this species makes for a bizarrely spectacular floral encounter. To see this plant in the wild would be a truly special event.

Photo Credit: Ch'ien C. Lee - www.wildborneo.com.my/photo.php?f=cld1500900.jpg

Further Reading: [1] [2]