An Endangered Iris With An Intriguing Pollination Syndrome

iris1.JPG

The Golan iris (Iris hermona) is a member of the Oncocyclus section, an elite group of 32 Iris species native to the Fertile Crescent region of southwestern Asia. They are some of the showiest irises on the planet. Sadly, like many others in this section, the Golan iris is in real danger of going extinct.

The Golan iris has a rather limited distribution. Despite being named in honor of Mt. Hermon, it is restricted to the Golan Heights region of northern Israel and southwestern Syria. Part of the confusion stems from the fact that the Golan iris has suffered from a bit of taxonomic uncertainty ever since it was discovered. It is similar in appearance to both I. westii and I. bismarckiana with which it is frequently confused. In fact, some authors still consider I. hermona to be a variety of I. bismarckiana. This has led to some serious issues when trying to assess population numbers. Despite the confusion, there are some important anatomical differences between these plants, including the morphology of their rhizomes and the development of their leaves. Regardless, if these plants are in fact different species, it means their respective numbers in the wild decrease dramatically. 

Photo by Dr. Avishai Teicher Pikiwiki Israel licensed under CC BY 2.5

Photo by Dr. Avishai Teicher Pikiwiki Israel licensed under CC BY 2.5

Like other members of the Oncocyclus group, the Golan iris exhibits an intriguing pollination syndrome with a group of bees in the genus Eucera. Their large, showy flowers may look like a boon for pollinators, however, close observation tells a different story. The Golan iris and its relatives receive surprisingly little attention from most of the potential pollinators in this region.

One reason for their lack of popularity has to do with the rewards (or lack thereof) they offer potential visitors. These irises produce no nectar and very little pollen. Because of this and their showy appearance, most pollinators quickly learn that these plants are not worth the effort. Instead, the only insects that ever pay these large blossoms any attention are male Eucerine bees. These bees aren't looking for food or fragrance, however. Instead, they are looking for a place to rest. 

A Eucerine bee visiting a nectar source. Photo by Gideon Pisanty (Gidip) גדעון פיזנטי • CC BY 3.0

A Eucerine bee visiting a nectar source. Photo by Gideon Pisanty (Gidip) גדעון פיזנטי • CC BY 3.0

The Oncocyclus irises cannot self pollinate, which makes studying potential pollinators a bit easier. During a 5 year period, researchers noted that male Eucerine bees were the only insects that regularly visited the flowers and only after their visits did the plants set seed. The bees would arrive at the flowers around dusk and poke around until they found one to their liking. At that point they would crawl down into the floral tube and would not leave again until morning. The anatomy of the flower is such that the bees inevitably contact stamen and stigma in the process. Their resting behavior is repeated night after night until the end of the flowering season and in this way pollination is achieved. Researchers now believe that the Golan iris and its relatives are pollinated solely by these sleeping male bees.

Sadly, the status of the Golan iris is rather bleak. As recent as the year 2000, there were an estimated 2,000 Golan irises in the wild. Today that number has been reduced to a meager 350 individuals. Though there is no single smoking gun to explain this precipitous decline, climate change, cattle grazing, poaching, and military activity have exacted a serious toll on this species. Plants are especially vulnerable during drought years. Individuals stressed by the lack of water succumb to increased pressure from insects and other pests. Vineyards have seen an uptick in Golan in recent years as well, gobbling up viable habitat in the process.

Photo by Dr. Avishai Teicher Pikiwiki Israel licensed under CC BY 2.5

Photo by Dr. Avishai Teicher Pikiwiki Israel licensed under CC BY 2.5

It is extremely tragic to note that some of the largest remaining populations of Golan irises can be found growing in active mine fields. It would seem that one of the only safe places for these endangered plants to grow are places that are extremely lethal to humans. It would seem that our propensity for violent tribalism has unwittingly led to the preservation of this species for the time being.

At the very least, some work is being done not only to understand what these plants need in order to germinate and survive, but also assess the viability of relocated plants that are threatened by human development. Attempts at transplanting individuals in the past have been met with limited success but thankfully the Oncocyclus irises have caught the eye of bulb growers around the world. By sharing information on the needs of these plants in cultivation, growers can help expand on efforts to save species like the Golan iris.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4]

 

Saving Bornean Peatlands is a Must For Conservation

Photo by Dukeabruzzi licensed under CC BY-SA 4.0

Photo by Dukeabruzzi licensed under CC BY-SA 4.0

The leading cause of extinction on this planet is loss of habitat. As an ecologist, it pains me to see how frequently this gets ignored. Plants, animals, fungi - literally every organism on this planet needs a place to live. Without habitat, we are forced to pack our flora and fauna into tiny collections in zoos and botanical gardens, completely disembodied from the environment that shaped them into what we know and love today. That’s not to say that zoos and botanical gardens don’t play critically important roles in conservation, however, if we are going to stave off total ecological meltdown, we must also be setting aside swaths of wild lands.

There is no way around it. We cannot have our cake and eat it too. Land conservation must be a priority both at the local and the global scale. Wild spaces support life. They buffer life from storms and minimize the impacts of deadly diseases. Healthy habitats filter the water we drink and, for many people around the globe, provide much of the food we eat. Every one of us can think back to our childhood and remember a favorite stretch of stream, meadow, or forest that has since been gobbled up by a housing development. For me it was a forested stream where I learned to love the natural world. I would spend hours playing in the creek, climbing trees, and capturing bugs to show my parents. Since that time, someone leveled the forest, built a house, and planted a lawn. With that patch of forest went all of the insects, birds, and wildflowers it once supported.

Scenarios like this play out all too often and sadly on a much larger scale than a backyard. Globally, forests have taken the brunt of human development. It is hard to get a sense of the scope of deforestation on a global scale, but the undisputed leaders in deforestation are Brazil and Indonesia. Though the Amazon gets a lot of press, few may truly grasp the gravity of the situation playing out in Southeast Asia.

Deforestation is a clear and present threat throughout tropical Asia. This region is growing both in its economy and population by about 6% every year and this growth has come at great cost to the environment. Indonesia (alongside Brazil) accounts for 55% of the world’s deforestation rates. This is a gut-wrenching statistic because Indonesia alone is home to the most extensive area of intact rainforest in all of Asia. So far, nearly a quarter of Indonesia’s forests have been cleared. It was estimated that by 2010, 2.3 million hectares of peatland forests had been felled and this number shows little signs of slowing. Experts believe that if these rates continue, this area could lose the remainder of its forests by 2056.

Consider the fact that Southeast Asia contains 6 of the world’s 25 biodiversity hotspots and you can begin to imagine the devastating blow that the levelling of these forests can have. Much of this deforestation is done in the name of agriculture, and of that, palm oil and rubber take the cake. Southeast Asia is responsible for producing 86% of the world’s palm oil and 87% of the world’s natural rubber. What’s more, the companies responsible for these plantations are ranked among some of the least sustainable in the world.

Borneo is home to a bewildering array of life. Researchers working there are constantly finding and describing new species, many of which are found nowhere else in the world. Of the roughly 15,000 plant species known from Borneo, botanists estimate that nearly 5,000 (~34%) of them are endemic. This includes some of the more charismatic plant species such as the beloved carnivorous pitcher plants in the genus Nepenthes. Of these, 50 species have been found growing in Borneo, many of which are only known from single mountain tops.

It has been said that nowhere else in the world has the diversity of orchid species found in Borneo. To date, roughly 3,000 species have been described but many, many more await discovery. For example, since 2007, 51 new species of orchid have been found. Borneo is also home to the largest flower in the world, Rafflesia arnoldii. It, along with its relatives, are parasites, living their entire lives inside of tropical vines. These amazing plants only ever emerge when it is time to flower and flower they do! Their superficial resemblance to a rotting carcass goes much deeper than looks alone. These flowers emit a fetid odor that is proportional to their size, earning them the name “carrion flowers.”

Rafflesia arnoldii in all of its glory. Photo by SofianRafflesia licensed under CC BY-SA 4.0

Rafflesia arnoldii in all of its glory. Photo by SofianRafflesia licensed under CC BY-SA 4.0

Photo by Orchi licensed under CC BY-SA 3.0

Photo by Orchi licensed under CC BY-SA 3.0

If deforestation wasn’t enough of a threat to these botanical treasures, poachers are having considerable impacts on Bornean botany. The illegal wildlife trade throughout southeast Asia gets a lot of media attention and rightfully so. At the same time, however, the illegal trade of ornamental and medicinal plants has gone largely unnoticed. Much of this is fueled by demands in China and Vietnam for plants considered medicinally valuable. At this point in time, we simply don’t know the extent to which poaching is harming plant populations. One survey found 347 different orchid species were being traded illegally across borders, many of which were considered threatened or endangered. Ever-shrinking forested areas only exacerbate the issue of plant poaching. It is the law of diminishing returns time and time again.

Photo by Orchi licensed under CC BY-SA 3.0

Photo by Orchi licensed under CC BY-SA 3.0

But to lump all Bornean forests under the general label of “rainforest” is a bit misleading. Borneo has multitude of forest types and one of the most globally important of these are the peatland forests. Peatlands are vital areas of carbon storage for this planet because they are the result of a lack of decay. Whereas leaves and twigs quickly breakdown in most rainforest situations, plant debris never quite makes it that far in a peatland. Plant materials that fall into a peatland stick around and build up over hundreds and thousands of years. As such, an extremely thick layer of peat is formed. In some areas, this layer can be as much as 20 meters deep! All the carbon tied up in the undecayed plant matter is carbon that isn’t finding its way back into our atmosphere.

Sadly, tropical peatlands like those found in Borneo are facing a multitude of threats. In Indonesia alone, draining, burning, and farming (especially for palm oil) have led to the destruction of 1 million hectares (20%) of peatland habitat in only a single decade. The fires themselves are especially worrisome. For instance, it was estimated that fires set between 1997-1998 and 2002-2003 in order to clear the land for palm oil plantations released 200 million to 1 billion tonnes of carbon into our atmosphere. Considering that 60% of the world’s tropical peatlands are found in the Indo-Malayan region, these numbers are troubling.

The peatlands of Borneo are totally unlike peatlands elsewhere in the world. Instead of mosses, gramminoids, and shrubs, these tropical peatlands are covered in forests. Massive dipterocarp trees dominate the landscape, growing on a spongey mat of peat. What’s more, no water flows into these habitats. They are fed entirely by rain. The spongey nature of the peat mat holds onto water well into the dry season, providing clean, filtered water where it otherwise wouldn’t be available.

Photo by JeremiahsCPs licensed under CC BY-SA 3.0

Photo by JeremiahsCPs licensed under CC BY-SA 3.0

This lack of decay coupled with their extremely acidic nature and near complete saturation makes peat lands difficult places for survival. Still, life has found a way, and Borneo’s peatlands are home to a staggering diversity of plant life. They are so diverse, in fact, that when I asked Dr. Craig Costion, a plant conservation officer for the Rainforest Trust, for something approaching a plant list for an area of peatland known as Rungan River region, he replied:

“Certainly not nor would there ever be one in the conceivable future given the sheer size of the property and the level of diversity in Borneo. There can be as many as a 100 species per acre of trees in Borneo... Certainly a high percentage of the species would only be able to be assigned to a genus then sit in an herbarium for decades until someone describes them.”

And that is quite remarkable when you think about it. When you consider that the Rungan River property is approximately 385,000 acres, the number of plant species to consider quickly becomes overwhelming. To put that in perspective, there are only about 500 tree species native to the whole of Europe! And that’s just considering the trees. Borneo’s peatlands are home to myriad plant species from liverworts, mosses, and ferns, to countless flowering plants like orchids and others. We simply do not know what kind of diversity places like Borneo hold. One could easily spend a week in a place like the Rungan River and walk away with dozens of plant species completely new to science. Losing a tract of forest in such a biodiverse region is a huge blow to global biodiversity.

Nepenthes ampullaria relies on decaying plant material within its pitcher for its nutrient needs. Photo by en:User:NepGrower licensed under Public Domain

Nepenthes ampullaria relies on decaying plant material within its pitcher for its nutrient needs. Photo by en:User:NepGrower licensed under Public Domain

Also, consider that all this plant diversity is supporting even more animal diversity. For instance, the high diversity of fruit trees in this region support a population of over 2,000 Bornean orangutans. That is nearly 4% of the entire global population of these great apes. They aren’t alone either, the forested peatlands of Borneo are home to species such as the critically endangered Bornean white-bearded gibbon, the proboscis monkey, the rare flat-headed cat, and the oddly named otter civet. All these animals and more rely on the habitat provided by these forests. Without forests, these animals are no more.

The flat-headed cat, an endemic of Borneo. Photo by Jim Sanderson licensed under CC BY-SA 3.0

The flat-headed cat, an endemic of Borneo. Photo by Jim Sanderson licensed under CC BY-SA 3.0

At this point, many of you may be feeling quite depressed. I know how easy it is to feel like there is nothing you can do to help. Well, what if I told you that there is something you can do right now to save a 385,000 acre chunk of peatland rainforest? That’s right, by heading over to the Rainforest Trust’s website (https://www.rainforesttrust.org/project/saving-stronghold-critically-endangered-bornean-orangutan/) you can donate to their campaign to buy up and protect the Rungan River forest tract.

Click on the logo to learn more!

Click on the logo to learn more!

By donating to the Rainforest Trust, you are doing your part in protecting biodiversity in one of the most biodiverse regions in the world. What’s more, you can rest assured that your money is being used effectively. The Rainforest Trust consistently ranks as one of the top environmental protection charities in the world. Over their nearly three decades of operation, the Rainforest Trust has protected more than 15.7 million acres of land in over 20 countries. Like I said in the beginning, habitat loss is the leading cause of extinction on this planet. Without habitat, we have nothing. Plants are that habitat and by supporting organizations such as the Rainforest Trust, you are doing your part to fight the biggest threats our planet faces. 

Further Reading: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Dipterocarp Forests

Photo by michel candel licensed under CC BY-NC-SA 2.0

Photo by michel candel licensed under CC BY-NC-SA 2.0

Spend any amount of time reading about tropical forests and you are destined to come across mention of dipterocarp forests. If you're anything like me, your initial thought might have been something along the lines of "what the heck does that mean?" Does it describe some sort of structural aspect of the forest, or perhaps a climatic component? To my surprise, dipterocarp forests refer to any forest in which the dominant species of trees are members of the family Dipterocarpaceae. Thus, I was introduced to a group of plants entirely new to me!

The family Dipterocarpaceae comprises 16 genera and roughly 700 species. Its members can be found throughout the tropical regions of the world, though they hit their greatest numbers in the forests of southeast Asia and specifically Borneo. As far as habit is concerned, the dipterocarps are largely arborescent, ranging in size from intermediate shrubs to towering, emergent canopy trees. If you have watched a documentary on or been to a tropical forest, it is very likely that you have seen at least one species of dipterocarp.

Photo by Mike Prince licensed under CC BY 2.0

Photo by Mike Prince licensed under CC BY 2.0

The dipterocarps have a long evolutionary history that stretches back to the supercontinent of Gondwana. As this massive landmass proceeded to break apart, the early ancestors of this group were carried along with them. Today we can find members of this family in tropical regions of South America, Africa, and Asia. Taxonomically speaking, the family is further divided into three sub families that, to some degree, reflect this distribution.  The subfamily Monotoideae is found in Africa and Colombia, the subfamily Pakaraimoideae is found in Guyana, and the subfamily Dipterocarpoideae is found in Asia.

Biologically, the dipterocarps are quite fascinating. Some species can grow quite large. Three genera - Dryobalanops, Hopea, and Shorea - regularly produce trees of over 80 meters (260 feet) in height. The world record for dipterocarps belongs to an individual of Shorea faguetiana, which stands a whopping 93 meters (305 feet) tall! That's not to say all species are giants. Many dipterocarps live out their entire lives in the forest understory.

Dipterocarpus retusus. Public Domain

Dipterocarpus retusus. Public Domain

For species growing in seasonal environments, flowering occurs annually or nearly so. Also, for dipterocarps that experience regular dry seasons, deciduousness is a common trait. For those growing in non-seasonal environments, however, flowering is more irregular and leaves are largely evergreen. Some species will flower once every 3 to 5 years whereas others will flower once every decade or so. In such cases, flowering occurs en masse, with entire swaths of forest bursting into bloom all at once. These mast years often lead to similar aged trees that all established in the same year. Though more work needs to be done on this, it is thought that various bee species comprise the bulk of the dipterocarp pollinator guild. 

Ecologically speaking, one simply cannot overstate the importance of this family. Wherever they occur, dipterocarps often form the backbone of the forest ecosystem. Their number and biomass alone is worth noting, however, these trees also provide fruits, pollen, nectar, and habitat for myriad forms of life. The larger dipterocarps are often considered climax species, meaning that they dominate in regions made up of mostly primary forest. For the most part, these trees are able to take advantage of more successional habitats, however, this has been shown to be severely limited by the availability of localized seed sources. 

Since we are on the topic of regeneration, a conversation about dipterocarps would not be complete if we didn't touch on logging. These trees are massive components of tropical economies. Their wood is highly coveted for a a variety of uses I won't go into here. The point is that, on a global scale, dipterocarp forests have taken a huge hit. Many species within this family are now threatened with extinction. Logging, both legal and illegal, specifically aimed at dipterocarps, has seen the destruction of millions of acres of old growth dipterocarp forests. With them goes all of the life that they support.

It's not enough to protect individual species. We need to rally behind whole ecosystem protection. Without it, we literally have nothing. Luckily there are groups like the Center For International Forestry Research and the Forest Research Institute of Malaysia that are working hard on research, conservation, and improved forestry standards in an effort to ease up on the detrimental practices currently in place. Still, these efforts are not enough either. Without the care, concern, and most important, the funding from folks like us, little can be done to stop the tide. That is why supporting land conservation agencies is one of the most powerful things we can do for this planet and for each other. 

Some great land conservation organizations worth supporting:

The Rainforest Trust - https://www.rainforesttrust.org/

The Nature Conservancy - http://bit.ly/2B0hFm

The Rainforest Alliance - https://www.rainforest-alliance.org/

Photo Credits: [1] [2] [3] [4]

urther Reading: [1]

Arctic Foxes: The Unintentional Gardeners

Predators are an integral component of any healthy ecosystem. Their influence can even be felt at the botanical level via what are called top-down controls. Either through direct predation or through altering their behavior, predators influence the herbivores in any system, which usually results in healthier plant communities. This method is rather indirect but new evidence shows that in the Arctic tundra, a top predator is having quite a direct influence on plant communities.

What's not to love about Arctic foxes? All anthropomorphic views aside, Arctic foxes are important predators in this ecosystem. Although the food web complexity on the tundra is largely driven by limits to plant productivity, a paper published in 2016 shows that these little canids can have profound effects on vegetation. This doesn't have to do with predation directly but rather their reproductive behavior. 

Arctic foxes live, give birth, and raise their young in underground dens. Without these subterranean homes, the foxes would be much more vulnerable to other predators as well as the harsh Arctic climate. Dens don't happen overnight either. Suitable sites are tended for generations and some dens may well be more than a century old. All this equates to a lot of activity in and around a good den site. 

With an average litter size of 8 - 10 pups per female, one can imagine the food and waste buildup must be considerable. Like all predators, Arctic fox food and waste are rich in nitrogen and phosphorus compounds, the necessary building blocks of life. Many an onlooker has noticed that, unsurprisingly, plant growth around Arctic fox dens is much more lush than on the surrounding landscape. Until recently though, such differences have hardly been quantified.

Arctic Fox (Vulpes lagopus) photo by Allan Hopkins licensed under CC BY-NC-ND 2.0

Arctic Fox (Vulpes lagopus) photo by Allan Hopkins licensed under CC BY-NC-ND 2.0

By examining the soil and plant characteristics around Artic fox dens in Canada and comparing these data to surrounding sites without Arctic fox dens, a team of researchers put the first comprehensive numbers to the effects of Arctic foxes on tundra plant communities. They found that soils from in and around Arctic fox dens contained significantly higher levels of nitrogen and phosphorus than did the surrounding control plots. What's more, these levels varied throughout the year. In June, for instance, soil nitrogen and phosphorus levels were 71% and 1195% higher than non-den soils. These levels seemed to switch later in the summer. In August, soil nitrogen from fox dens were 242% higher and soil phosphorus levels were 191% higher.

As you can probably imagine, all of these extra nutrients caused a change in vegetation around the dens. Den sites were far more productive in terms of vegetation. The team found that, on average, Arctic fox dens supported 2.8 times more plant biomass than did the surrounding area. The authors note that these were conservative estimates and that the true values are much higher. Taken together, these results demonstrate that far from simply being top predators, Arctic foxes are true ecosystem engineers, at least on local scales. This is especially important in such a demanding ecosystem as the Arctic tundra.

Photo Credits: [1] [2]

Further Reading: [1]

Botanical Gardens & Plant Conservation

BG1.JPG

Botanical gardens are among my favorite places in the world. I find them both relaxing and stimulating, offering something for all of our senses. Botanical gardens are valuable for more than just their beauty. They serve a deeper purpose than simply showcasing endless poinsettia varieties or yet another collection of Dale Chihuly pieces (a phenomenon I can't quite wrap my head around). Botanical gardens are vitally important centers of ex situ plant conservation efforts.

Ex situ conservation literally means "off site conservation," when plants are grown within the confines of a botanical garden, often far away from their native habitats. This is an important process in and of its own because housing plants in different locations safeguards them from complete annihilation. Simply put, don't put all your endangered eggs in one basket.

IMG_2395.jpg

I don't think botanical gardens get enough credit for their conservation efforts. Sadly, such endeavors are often overshadowed. That's not to say we don't have a good handle on what is going on. In fact, a study published in August of 2017 looked at the status of ex situ plant conservation efforts around the globe.

The paper outlines a conservative estimate of the diversity of plants found in botanical gardens and highlights areas in desperate need of improvement. Utilizing a dataset compiled by Botanic Gardens Conservation International (BGCI), the team found that the world's botanical gardens contain somewhere around 30% or 105,209 of the 350,699 plant species currently known to science. In total, they estimate humanities various living collections contain representatives from roughly 90% of the known plant families. That is pretty impressive considering the scale of plant diversity on our planet.

Proportions of the world's plants represented in botanical garden collections (Source)

Proportions of the world's plants represented in botanical garden collections (Source)

Their research didn't stop there either. The team dove deeper into these numbers and found that there are some serious discrepancies in these estimates. For instance (and to my surprise), botanical gardens house more temperate plant species than they do tropical plant species. They estimated that nearly 60% of the world's temperate plant species are being grown in botanical gardens around the world but only 25% of tropical species. This is despite the fact that most of the world's plants are, in fact, tropical.

Similarly, only 5% of botanical garden collections are dedicated to non-vascular plants like mosses and liverworts. This is a shame not only because these plants are quite interesting and beautiful, but they also are descendants of the first plant lineages to make their way onto land. They are vital to understanding plant evolution as well as plant diversity.

As I mentioned above, ex situ conservation efforts are critical in fighting plant extinctions across the globe. With 1/5 of the world's plants at risk of extinction, the authors of the paper were particularly interested in how botanical gardens were doing in this regard. They found that although various institutions are growing nearly half of all the known threatened plant species on this planet, only 10% of their collection space is devoted to these species. It goes without saying that this number needs to improve if we are to stave off further extinctions.

Taken together, this study paints an interesting and informative picture of botanical garden collections on a global scale. They are doing amazing work to protect and showcase plant diversity. However, there is always a need for improvement. More space and effort needs to be made in ex situ plant conservation efforts. More plants, especially little known tropical species, need to be brought into cultivation. More space must be devoted to propagating threatened and endangered species. Finally, more attention must be given to natural plant diversity rather than gaudy cultivars. If you love botanical gardens as much as I do, please support them. As the authors so eloquently summarize, "Without deep sustained public support, the plant conservation movement will struggle."

Further Reading: [1]

 

 

Eastern North America's Temperate Rainforest

I have often remarked that working in the southern Appalachian Mountains during the summer feels more like working in a rainforest than it does an eastern deciduous forest. Lots of rain, high humidity, and a bewildering array of flora and fauna conjure up images of some far away jungle. Only winter can snap this view out of ones head. I recently learned, however, that these feelings are not misplaced. Indeed, this region of southern Appalachia is considered a temperate rainforest. 

These mountains are old. They arose some 480 million years ago and have been shaping life in this region of North America ever since. Another thing these mountains are quite good at is creating their own weather systems. Here in southern Appalachia, warm, wet air from the Gulf of Mexico and western Atlantic blows northward until it hits the Appalachian Mountains. The mountainous terrain comprising parts of Pisgah, Nantahala, and Chattahoochee National Forests has been referred to as "the Blue Wall" and is responsible for the unique conditions that created this temperate rainforest.

As this air rises over their peaks, it begins to cool. As it does, water in the air condenses. This results in torrents of rain. On average, this area receives anywhere from 60 to 100+ inches of rain every year. The Appalachian temperate rainforest is second only to the Pacific Northwest in terms of rainfall in North America. All of this water and heat coupled with the age and relative stability of this ecosystem over time has led to the explosion of biodiversity we know and love today. 

Life abounds in the southern Apps. The plant diversity can be rather intimidating as species from the north mix with those coming up from the south. For instance, there are more tree species in these mountains than in all of Europe.  Rates of endemism in these mountains, both in terms of flora and fauna, are remarkable. There are relics of bygone eras that never expanded their range following repeated glaciations. What's more, a multitude of species combinations can be found as you go from low to high elevations. 

At lower elevation, forests are dominated by American beech (Fagus grandifolia), yellow birch (Betula alleghaniensis), maple (Acer spp.), birch (Betula spp.), and oak (Quercus spp.). Magnolias cover the humid coves. Mid elevations boast birches, mountain ash (Sorbus americana), and mountain maple (Acer spicatum). High elevations contain fraser fir (Abies fraseri) and redspruce (Picea rubens). Both the understory and the the mountain balds are home to a staggering array of different Heaths (Ericaceae). From Rhododendrons to azaleas and mountain laurels, the colors are like those lifted from an abstract painting. The forest floor is where I focus most of my energy. It is hard to capture the diversity of this habitat in only a few paragraphs. What I can say is that I haven't even scratched the surface. It seems like there is something new to see around every corner. 

The point I am trying to make is that this region is quite special. It is something worth protecting. From development to mining and changes in temperature and precipitation, human activities are exacting quite a toll on the Appalachian Mountains. The system is changing and there is no telling what the future is going to look like. Conserving wild places is a must. There is no way around it. Luckily there is a reason people love this place so very much. There are a lot of dedicated folks out there working to protect and conserve everything that makes southern Appalachia what it is. Get out there, enjoy, and support your local land trust!

Further Reading:  [1] 

Pitcher's Thistle and the Dunes It Calls Home

Sand dunes are harsh habitats for any organism to make a living. They are hot, they are low in nutrients, water doesn't stick around for very long, and they can be incredibly unstable. Despite these obstacles, dunes around the world host rather unique floras comprised of plants well suited to these conditions. Sadly, we humans have been pretty good at destroying many of these dune habitats. This is especially true along the shores of the Great Lakes. To put this in perspective, I would like us to take a closer look at a special Great Lakes dune denizen. 

Meet Pitcher's thistle (Cirsium pitcheri). It is a true dune plant and is endemic to the shores of the upper Great Lakes. Its a rather lanky plant, often looking as if it is having a hard time supporting its own weight. Despite its unkempt look, adult plants can reach heights of 3 feet, which is quite impressive given where it lives. It is covered in silvery hairs, giving the plant a shiny appearance. These hairs likely protect the plant from the onslaught of sun, abrasive wind-blown sand, and desiccation. One of the benefits of growing in such inhospitable places is that historically speaking, Pitcher's thistle could grow with little competition. Individual plants grow for roughly 5 to 8 years before flowering. After seeds are produced, the plant dies. The seedlings are then free to develop without being shaded out. 

The last century or so have not been good to Pitcher's thistle. Shoreline development, altered disturbance regimes, and isolation of various populations have fragmented its range and reduced its genetic diversity. To make matters worse, its remaining habitat is still shrinking. Shoreline development has altered wave action that is vital to these dune habitats. Waves that once brought in new sediments and built dunes are largely carving away what's left. They are eroding at an alarming rate that even dune-adapted plants like Pitcher's thistle can't keep up with. Recreational use of these habitats adds another layer as heavy foot traffic carves deep scars into these dunes, furthering their demise. 

One silver lining in all of this is that dedicated researchers are paying close attention to the natural history of this species. They have discovered some fascinating things that will help in the recovery of this special plant. For instance, it has been observed that although trampling doesn't necessarily kill Pitcher's thistle, it does damage sensitive buds. This often results in plants developing multiple flower heads. Although this sounds like a benefit, researchers discovered that these damaged plants actually produce fewer viable seeds despite producing more flowers. 

Gary B. Walton / USFWS Public Domain

Gary B. Walton / USFWS Public Domain

Also, they have found that American goldfinches are playing a considerable role in its reproductive success. Despite the tightly clasping, spiny bracts that protect the seeds, goldfinches have been found to reduce seed production by 90% as they forage for food and the fluffy seed hairs for nest building. Evidence suggests that goldfinches are more likely to target small, isolated populations of Pitcher's thistle rather than large, contiguous patches. The reason for this is anyone's guess but it does suggest that they way around this issue is to supplement dwindling populations with new plants grown from seed. 

Without intervention, it is very likely that Pitcher's thistle would go extinct in the near future. Luckily, researchers and federal officials are teaming up to make sure that doesn't happen. Long term population monitoring is in place throughout its range and a sandbox technique has been developed for germinating and growing up new individuals to supplement wild populations. Through habitat restoration efforts, supplementing of existing and the creation of new populations, the future of this charismatic dune thistle has gotten a little bit brighter. It isn't out of the metaphorical woods but there is reason for hope. 

Photo Credit: [1] 

Further Reading: [1]

Orchid Dormancy Mediated by Fungi

Photo by NC Orchid licensed under CC BY-NC 2.0

Photo by NC Orchid licensed under CC BY-NC 2.0

North America's terrestrial orchids seem to have mastered the disappearing act. When stressed, these plants can enter into a vegetative dormancy, existing entirely underground for years until the right conditions return for them to grow and bloom. Cryptic dormancy periods like this can make assessing populations quite difficult. Orchids that were happy and flowering one year can be gone the next... and the next... and the next...

How and why this dormancy is triggered has confused ecologists and botanists alike. Certainly stress is a factor but what else triggers the plant into going dormant? According to a recent paper published in the American Journal of Botany, the answer is fungal.

Orchids are the poster children for mycorrhizal symbioses. Every aspect of an orchid's life is dependent on these fungal interactions. Despite our knowledge of the importance of mycorrhizal presence in orchid biology, no one had looked at how the abundance of mycorrhizal fungi influenced the life history of these charismatic plants until now.

By observing the presence and abundance of a family of orchid associated fungi known as Russulaceae, researchers found that the abundance of mycorrhizal fungi in the environment is directly related to whether or not an orchid will emerge. The team focused on a species of orchid known commonly as the small whorled pogonia (Isotria medeoloides). Populations of this federally threatened orchid are quite variable and assessing their numbers is difficult.

The team found that the abundance of mycorrhizal fungi is not only related to prior emergence of these plants but could also be used as a predictor of future emergence. This has major implications for orchid conservation overall. It's not enough to simply protect orchids, we must also protect the fungal communities they associate with.

Research like this highlights the need for a holistic habitat approach to conservation issues. So many species are partners in symbiotic relationships and we simply can't value one partner over the other. If conditions change to the point that they no longer favor the mycorrhizal partner, it stands to reason that it would only be a matter of years before the orchids disappeared for good.

Photo Credit: NC Orchid

Further Reading: [1]

The Longleaf Pine: A Champion of the Coastal Plain

As far as habitat types are concerned, the longleaf pine savannas of southeastern North America are some of the most stunning. What's more, they are also a major part of one of the world's great biodiversity hotspots. Sadly, they are disappearing fast. Agriculture and other forms of development are gobbling up the southeast coastal plain at a bewildering rate. For far too long we have ignored, or at the very least, misunderstood these habitats. Today I would like to give a brief introduction to the longleaf pine and the habitat it creates.

The longleaf pine (Pinus palustris) is an impressive species. Capable of reaching heights of 100 feet or more, it towers over a landscape that boggles the mind. It is a landscape born of fire, of which the long leaf pine is supremely adapted to dealing with. These pines start out life quite differently than other pines. Seedlings do not immediately reach for the canopy. Instead, young long leaf pines spend their first few years looking more like a grass than a tree. Lasting anywhere between 5 to 12 years, the grass stage of development gives the young tree a chance to save up energy before it makes any attempt at vertical growth. 

The reason for this is fire. If young long leaf pines were to start their canopy race immediately, they would very likely be burned to death before they grew big enough to escape the harmful effects of fire. Instead, the sensitive growing tip is safely tucked away in the dense needle clusters. If a fire burns through the area only the tips of the needles will be scorched, leaving the rest of the tree safe and sound. During this stage, the tree is busy putting down an impressive root system. The taproot alone can reach depths of 6 to 9 feet!

Once a hardy root system has been formed and enough energy has been acquired, young longleaf pines go through a serious growth spurt. Starting in later winter or early spring, the grass-like tuft will put up a white growth tip called a candle. This tip shoots upwards quite rapidly, growing a few feet in only a couple of months. This is sometimes referred to as the bottlebrush phase because no horizontal branches are formed during this time. The goal at this point is to get the sensitive growing tip as far away from the ground as possible so as to avoid damaging fires. It is fun to encounter long leaf pines at this stage because like any young adult, they look a bit awkward.

Photo Credit: Woodlot - Wikimedia Commons

Photo Credit: Woodlot - Wikimedia Commons

Once the tree reaches about 6 to 10 feet in height, it will finally begin to produce horizontal branches. This doesn't stop its canopy bid, however, as it still will put on upwards of 3 feet of vertical growth each year! Every year its bark grows thicker and thicker, thus each year it becomes more and more resistant to fire. Far from being a force to cope with, fire unwittingly gives longleaf pines a helping hand by clearing the habitat of potential competitors that are less adapted to dealing with burns. After about 30 years of growth, longleaf pines reach maturity and will start to produce fertile cones.

Before European settlement, longleaf pine savanna covered roughly 90,000,000 acres of southeastern North America. Clearing and development have reduced that to a mere 5% of its former glory. For far too long its coastal plain habitat was thought to be a flat, monotonous region created by early human burning in the last few thousand years. We now know how untrue those assumptions are. Sure, the region is flat but it is anything but monotonous. Additionally, the coastal plain is one of the most lightning prone regions in North America. Fires would have been a regular occurrence long before any humans ever got there. 

Red indicates forest loss between 2011 and 2014. http://glad.umd.edu/gladmaps

Evidence suggests that this coastal plain habitat has remained relatively stable for the last 62,000 years. As such, it is full of unique species. Surveys of the southeastern coastal plain have revealed multiple centers of plant endemism, rivaled in North America only by the southern Appalachian Mountains. In fact, taken together, the coastal plain forests are widely considered one of the world's biodiversity hotspots! Of the 62,000 vascular plants found in these forests, 1,816 species (29.3%) are endemic. Its not just plants either. Roughly 1,400 species of fish, amphibians, reptiles, birds, and mammals rely on the coast plain forests for survival.

Luckily, we are starting to wake up to the fact that we are losing one of the world's great biodiversity hotspots. Efforts are being put forth in order to conserve and restore at least some of what has been lost. Still, the forests of southeastern North America are disappearing at an alarming rate. Despite comprising only 2% of the world's forest cover, the southern forests are being harvested to supply 12% of the world's wood products. This is simply not sustainable. If nothing is done to slow this progress, the world stands to lose yet another biodiversity hotspot. 

If this sounds as bad to you as it does to me then you probably want to do something. Please check out what organizations such as The Longleaf Alliance, Partnership For Southern Forestland Conservation, The Nature Conservancy, and The National Wildlife Federation are doing to protect this amazing region. Simply click the name of the organization to find out more.

Further Reading: [1] [2] [3] [4] 

Important Lessons From Ascension Island

Located in the middle of the South Atlantic, Ascension Island is probably not on the top of anyone's travel list. This bleak volcanic island doesn't have much to offer the casual tourist but what it lacks in amenities it makes up for in a rich and bizarre history. Situated about 2,200 km east of Brazil and 3,200 km west of Angola, this remote island is home to one of the most remarkable ecological experiments that is rarely talked about. The roots of this experiment stem back to a peculiar time in history and the results have so much to teach the human species about botany, climate, extinction, speciation, and much more. What follows is not a complete story; far from it actually. However, my hope is that you can take away some lessons from this and, at the very least, use it as a jumping off point for future discussions. 

Ascension Island is, as land masses go, quite young. It arose from the ocean floor a mere 1 million years ago and is the result of intense volcanic activity. Estimates suggest that volcanism was still shaping this island as little as 1000 years ago. Its volcanic birth, young age, isolated conditions, and nearly non-existent soils meant that for most of its existence, Ascension Island was a depauperate place. It was essentially a desert island. Early sailors saw it as little more than a stopover point to gather turtles and birds to eat as they sailed on to other regions. It wasn't until 1815 that any permanent settlements were erected on Ascension. 

Photo by Drew Avery licensed under CC BY 2.0

Photo by Drew Avery licensed under CC BY 2.0

In looking for an inescapable place to imprison Napoleon Bonaparte, the Royal Navy claimed Ascension in the name of King George III. Because Napoleon had a penchant for being an escape artist, the British decided to build a garrison on the island in order to make sure Napoleon would not be rescued. In doing so, the limitations of the island quickly became apparent. There were scant soils in which to grow vegetables and fresh water was nearly nonexistent. 

The native flora of Ascension was minimal. It is estimated that, until the island was settled, only about 25 to 30 plant species grew on the island. Of those 10 (2 grasses, 2 shrubs, and 6 ferns) were considered endemic. If the garrison was to persist, something had to be done. Thus, the Green Mountain garden was established. British marines planted this garden at an elevation of roughly 2000 feet. Here the thin soils supported a handful of different fruits and vegetables. In 1836, Ascension was visited by a man named Charles Darwin. Darwin took note of the farm that had developed and, although he admired the work that was done in making Ascension "livable" he also noted that the island was "destitute of trees."

One of Ascension Island's endemic ferns - Pteris adscensionis. Photo by Drew Avery licensed under CC BY 2.0

One of Ascension Island's endemic ferns - Pteris adscensionis. Photo by Drew Avery licensed under CC BY 2.0

Others shared Darwin's sentiment. The prevailing view of this time period was that any land owned by the British empire must be transformed to support people. Thus, the wheels of 'progress' turned ever forward. Not long after Darwin's visit, a botanist by the name of Joseph Hooker paid a visit to Ascension. Hooker, who was a fan of Darwin's work, shared his sentiments on the paucity of vegetation on the island. Hooker was able to convince the British navy that vegetating the island would capture rain and improve the soil. With the support of Kew Gardens, this is exactly what happened. Thus began the terraforming of Green Mountain.

Photo by LordHarris licensed under CC BY-SA 3.0

Photo by LordHarris licensed under CC BY-SA 3.0

For about a decade, Kew shipped something to the tune of 330 different species of plants to be planted on Ascension Island. The plants were specifically chosen to withstand the harsh conditions of life on this volcanic desert in the middle of the South Atlantic. It is estimated that 5,000 trees were planted on the island between 1860 and 1870. Most of these species came from places like Argentina and South Africa. Soon, more plants and seeds from botanical gardens in London and Cape Town were added to the mix. The most incredible terraforming experiment in the world was underway on this tiny volcanic rock. 

By the late 1870's it was clear the the experiment was working. Trees like Norfolk pines (Araucaria heterophylla), Eucalyptus spp. and figs (Ficus spp.), as well as different species of banana and bamboo had established themselves along the slopes of Green Mountain. Where there was once little more than a few species of grass, there was now the start of a lush cloud forest. The vegetation community wasn't the only thing that started to change on Ascension. Along with it changed the climate. 

Photo by Drew Avery licensed under CC BY 2.0

Photo by Drew Avery licensed under CC BY 2.0

Estimates of rainfall prior to these terraforming efforts are sparse at best. What we have to go on are anecdotes and notes written down by early sailors and visitors. These reports, however, paint a picture of astounding change. Before terraforming began, it was said that few if any clouds ever passed overhead and rain rarely fell. Those living on the island during the decade or so of planting attested to the fact that as vegetation began to establish, the climate of the island began to change. One of the greatest changes was the rain. Settlers on the island noticed that rain storms were becoming more frequent. Also, as one captain noted "seldom more than a day passes over now without a shower or mist on the mountain." The development of forests on Ascension were causing a shift in the island's water cycle. 

Plants are essentially living straws. Water taken up by the roots travels through their tissues eventually evaporating from their leaves. The increase in plant life on the island was putting more moisture into the air. The humid microclimate of the forest understory cooled the surrounding landscape. Water that would once have evaporated was now lingering. Pools were beginning to form as developed soils retained additional moisture.

Photo by Ben Tullis licensed under CC BY 2.0

Photo by Ben Tullis licensed under CC BY 2.0

Now, if you are anything like me, at this point you must be thinking to yourself "but what about the native flora?!" You have every right to be concerned. I don't want to paint the picture that everything was fine and dandy on Ascension Island. It wasn't. Even before the terraforming experiment began, humans and other trespassers left their mark on the local biota. With humans inevitably comes animals like goats, donkeys, pigs, and rats. These voracious mammals went to work on the local vegetation. The early ecology that was starting to develop on Ascension was rocked by these animals. Things were only made worse when the planting began.

Of the 10 endemic plants native to Ascension Island, 3 went extinct, having been pushed out by all of the now invasive plant species brought to the island. Another endemic, the Ascension Island parsley fern (Anogramma ascensionis) was thought to be extinct until four plants were discovered in 2010. The native flora of Ascension island was, for the most part, marginalized by the introduction of so many invasive species. This fact was not lost of Joseph Hooker. He eventually came to regret his ignorance to the impacts terraforming would have on the native vegetation stating “The consequences to the native vegetation of the peak will, I fear, be fatal, and especially to the rich carpet of ferns that clothed the top of the mountain when I visited it." Still, some plants have adapted to life among their new neighbors. Many of the ferns that once grew terrestrially, can now be found growing epiphytically among the introduced trees on Green Mountain. 

The Ascension Island parsley fern (Anogramma ascensionis). Photo by Ascension Island Government Conservation Department licensed under CC BY-SA 3.0

The Ascension Island parsley fern (Anogramma ascensionis). Photo by Ascension Island Government Conservation Department licensed under CC BY-SA 3.0

Today Ascension Island exists as a quandary for conservation ecologists. On the one hand the effort to protect and conserve the native flora and fauna of the island is of top priority. On the other hand, the existence of possibly the greatest terraforming effort in the world begs for ecological research and understanding. A balance must be sought if both goals are to be met. Much effort is being put forth to control invasive vegetation that is getting out of hand. For instance, the relatively recent introduction of a type of mesquite called the Mexican thorn (Prosopis juliflora) threatens the breeding habitat of the green sea turtle. Efforts to remove this aggressive species are now underway. Although it is far too late to reverse what has been done to Ascension Island, it nonetheless offers us something else that may be more important in the long run: perspective.

If anything, Ascension Island stands as a perfect example of the role plants play in regulating climate. The introduction of these 330+ plant species to Ascension Island and the subsequent development of a forest was enough to completely change the weather of that region. Where there was once a volcanic desert there is a now a cloud forest. With that forest came clouds and rain. If adding plants to an island can change the climate this much, imagine what the loss of plants from habitats around the world is doing. 

Each year an estimated 18 million acres of forest are lost from this planet. As human populations continue to rise, that number is only going to get bigger. It is woefully ignorant to assume that habitat destruction isn't having an influence on global climate. It is. Plants are habitat and when they go, so does pretty much everything else we hold near and dear (not to mention require for survival). If the story of Ascension does anything, I hope it serves as a reminder of the important role plants play in the function of the ecosystems of our planet. 

The endemic Ascension spurge (Euphorbia origanoides). Photo by Drew Avery licensed under CC BY 2.0

The endemic Ascension spurge (Euphorbia origanoides). Photo by Drew Avery licensed under CC BY 2.0

Photo by DCSL licensed under CC BY-NC 2.0

Photo by DCSL licensed under CC BY-NC 2.0

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8]

Further Reading: [1] [2] [3]

 

Brother of Hibiscus

Photo by David Eickhoff licensed under CC BY 2.0

Photo by David Eickhoff licensed under CC BY 2.0

Islands are known for their interesting flora and fauna. Until humans came on the scene, colonization events by different species on different islands were probably rare events, with long stretches of time in between. Because of this, islands are interesting experiments in evolution, often having endemic species found nowhere else in the world. Hawai'i was once home to many different kinds of endemic species. One such group are the Hibiscadelphus.

As you may have gathered by the name, Hibiscadelphus is a relative of hibiscus. The Latin name means "brother of Hibiscus." Unlike the widely splayed flowers of their relatives, Hibiscadelphus flowers never fully open. Instead, they form a tubular structure with a curved lower lip. The genus consists of 7 species. Four of these have gone completely extinct, two are only maintained in cultivation, and the remainder is barely holding on. There have been attempts to reestablish some species into other portions of their range but due to hybridization, these attempts were ceased. In my opinion this is a shame. In this case, a hybrid is better than losing both parental species and it would still be uniquely Hawaiian.

Why are Hibiscadelphus so rare? Well, humans have a sad history when it comes to colonizing islands. They bring with them a multitude of invasive species at a rate in which the local flora and fauna cannot adapt. They change the land through cultivation and development as well as by subduing natural fire regimes. Also, they wipe out keystone species, which causes a ripple effect throughout the environment. Hibiscadelphus have faced all of these threats and more. Pigs and rats eat their seeds, their habitats have been turned over for the ever-increasing human population, fires have been stopped, and some of their pollinators, the endemic honeycreepers, have also been driven to extinction thanks to avian pox and malaria. Sadly, this is a story that repeats itself time and time again all over the world. For now, the future of Hibiscadelphus is rather bleak.

Photo Credit: David Eickhoff

Further Reading:

http://bit.ly/2ao84X1

http://bit.ly/2aEfpkn

The Mountain Sweet Pitcher Plant

DSCN9285.JPG

I am fascinated by pitcher plants. The myriad shapes, sizes, and colors make them quite a spectacle. Add to that their carnivorous habit and what is not to love? I am used to having to visit bogs or coastlines to see them in person so you can imagine my surprise to learn that a small handful of pitcher plants haunt the mountains of Southern Appalachia.

DSCN9284.JPG

Sarracenia jonesii is a recent acquaintance of mine. I never knew this species existed until 2016. It is a slender pitcher plant whose traps grow taller and narrower than the purple pitcher plant (S. purpurea) but not nearly as tall and robust as species like S. leucophylla. Regardless of its size, this one interesting carnivore. One unique aspect of its ecology is the habitats in which it grows. What could be more strange than a pitcher plant clinging to sloping granite slabs?

DSCN2549.JPG

Most mountainous areas don't hold water for very long. Aside from bowls and the occasional lake, gravity makes short work of standing water. In southern Appalachia, this often results in impressive cascades where sheets of water flow over granite outcrops and balds. Where water moves slow enough to not wash soil and moss away, cataract bogs can form. Soils are so thin in these areas that trees and shrubs can't take root, thus keeping competition to a minimum. Because granite is rather inert, nutrients are scarce. All of these factors combine to make prime carnivorous plant habitat.

A cataract bog clinging to the side of a waterfall.

A cataract bog clinging to the side of a waterfall.

Along the edges of these cataract bogs, anywhere sphagnum and other mosses grow is where S. jonesii finds a home. One would think that growing in such hard-to-reach places would protect this interesting and unique carnivore. Sadly, that is not the case. To start with, S. jonesii was never common to begin with. Native to a small region of North and South Carolina, it is now only found in about 10 locations. 

Habitat destruction both direct and indirect (alterations in hydrology) has taken its toll on its numbers in the wild. To add insult to injury, poaching has become a serious issue. In fact, an all green population of this species was completely wiped out by greedy collectors looking to add something rare to their collection. The good news is that there are dedicated folks working on conserving and reintroducing this plant into the wild. In 2007, conservationists at Meadowview Biological Research Station, with help from the National Fish and Wildlife Foundation Grant, successfully reintroduced a population of S. jonesii to its former range.

Although the future remains uncertain for this species, it nonetheless has captured hearts and minds alike. Hopefully the charismatic nature of this species is enough to save it from extinction. I only wish such dedicated conservation efforts were directed at more imperiled plant species, both charismatic and not. 

Further Reading: [1] [2] [3]

The Fall of Corncockle

Photo by Sonnentau licensed under CC BY-NC 2.0

Photo by Sonnentau licensed under CC BY-NC 2.0

This switch from more traditional farming practices to industrialized monocultures has left a damaging legacy on ecosystems around the globe. This is especially true for unwanted plants. Species that once grew in profusion are now sprayed and tilled out of existence. Nowhere has this been better illustrated than for a lovely little plant known commonly as the corncockle (Agrostemma githago). 

This species was once a common weed in European wheat fields. Throughout much of the 19th and early 20th century, it was likely that most wheat sold contained a measurable level of corncockle seed. Its pink flowers would have juxtaposed heavily against the amber hue of grain. Indeed, its habit of associating with wheat has lead to its introduction around the globe. It can now be found growing throughout parts of North America, Australia, and New Zealand. 

However, in its home range of Europe, the corncockle isn't doing so well. The industrialization of farming dealt a huge blow to corncockle ecology. The broad-scale application of herbicides wreaked havoc on corncockle populations. Much more detrimental was the switch to winter wheat, which caused a decoupling between harvest time and seed set for the corncockle. Whereas it once synced quite nicely with regular wheat harvest, winter wheat is harvested before corncockle can set seed. As such, corncockle has become extremely rare throughout its native range and was even thought to be extinct in the UK. 

A discovery in 2014 changed all of that. National Trust assistant ranger Dougie Holden found a single plant flowering near a lighthouse. Extensive use of field guides and keys confirmed that this plant was indeed a corncockle, the first seen blooming in the UK in many decades. It is likely that the sole plant grew from seed churned up by vehicle traffic the season before. 

Photo Credit: sonnentau (bit.ly/1qo3XQK)

Further Reading:
Clapham, A.R., Tutin, T.G. and Warburg, E.F. 1968. Excursion Flora of the British Isles. Cambridge University Press

Why You Should Never Buy Cypress Mulch

Photo by Jesse Reeder licensed under CC BY-NC-ND 2.0

Photo by Jesse Reeder licensed under CC BY-NC-ND 2.0

Gardening season is soon to be underway here in the northern hemisphere. This past weekend saw droves of people taking advantage of the nice weather by getting their hands dirty in the garden. A walk around the neighborhood brought with it a lot of smiles and a chance to reconnect with neighbors I haven't talked to in a while but it also brought with it something sinister. Lingering in the air was the scent of cypress mulch. Tons upon tons of it are being spread over gardens everywhere. One might ask "Whats the problem? Cypress mulch is more durable and more insect resistant than other mulches!"

WRONG!

Anymore today, these ideas are leftovers of a long gone era. Back when old growth cypress forests were still a thing, these centuries old trees did impart rot and pest resistance into their wood. Today, this is not the case. Because logging has taken most of the old growth cypress from places like Florida and Louisiana, mulch companies have had to resort to cutting down and mulching young, second and third growth cypress stands. Barely given the time to grow into the towering specimens their parents and grandparents once were, these young trees have not yet imparted the centuries worth of compounds into their wood that keep them from rotting and deter insect predators.

The saddest part of the cypress mulch industry is that they are destroying valuable and irreplaceable habitat for the myriad lifeforms that rely on cypress swamps for their existence. To add insult to injury, recovery of cypress trees is almost negligible anymore today due to the way we have managed our waterways. Cypress seedlings require inundation by freshwater and regular silt deposition in order to successfully germinate. A century of flood control, inundation by brackish water, as well as dam and ship canal building have completely upset this dynamic. Now, instead of building new habitat for cypress swamps, these sediments are washed away, far out into the Gulf of Mexico.

What staggeringly few people seem to care to realize is that cypress swamps are our first line of defense against hurricanes. Cypress swamps can cut the force of a storm surge by 90%. It has been estimated that the cypress swamps in Louisiana alone are worth a staggering $6.7 billion in storm protection every year. That is a lot of cash, people!

As with any other industry, the cypress mulch companies are driven by consumer demand. The simple act of individuals, communities, and local governments not purchasing this nasty product is all it will take to lessen the blow to these precious habitats. At the rate cypress is being cut, it will not take long for us to exhaust the resource entirely. As you are looking to do some gardening this year, and many years into the future, please keep these great trees in mind and stop buying cypress mulch. In lieu of wood and bark mulches, you should consider using shredded leaves from your property instead. They make excellent mulch and being locally sourced, the reduce the chances of introducing disease and other pests to your landscape. In the words of Captain Planet, "the power is yours!"

Photo Credit: Jesse Reeder (http://bit.ly/1wmQpn8)

Further Reading: [1] [2] [3] [4]






 

The Truth About Coffee

Photo by Ria Tan licensed under CC BY-NC-ND 2.0

Photo by Ria Tan licensed under CC BY-NC-ND 2.0

Mmm mmm coffee. This wonderful elixir has taken over the world. Though individual tastes and preferences vary, there is no denying that most folks who turn to coffee enjoy its effects as a stimulant. Many an In Defense of Plants post has been written in a coffee-fueled frenzy. Even as I write this piece, I am taking breaks to sip on a warm mug of the stuff. Coffee has plenty of proponents as well as its fair share of nay sayers but the health effects don't really concern me much. Today I would rather talk with you about the shrubs that are behind all of this. 

The coffee we drink comes from a handful of shrubs in the genus Coffea. Native to parts of Africa, these shrubs are distant relatives of plants like buttonbush (Cephalanthus occidentalis) and the bedstraws (Galium sp.). The "beans" that we brew coffee from are not beans at all but rather a type of pit or stone found in the center of a bright red berry. Before they are roasted, the "beans" are actually green. Plants in this genus produce an alkaloid compound known as caffeine. Though it may seem strange, the purpose of caffeine is not to stimulate the human nervous system (though it is a wonderful side effect) but rather it is produced as a defense mechanism for the plant. Making this compound is a complex process that involves many metabolic steps within the tissues of the plant. There are certain factions out there who would like to argue that this is proof against evolution but, as always, evidence seems to be the downfall of their argument. 

Creationists will tell you that the adaptations we see throughout the living world are too complex to have happened by accident. In reality, there is a vast amount of evidence that disputes this. Caffeine is one such example. It has evolved independently multiple times in many different plant lineages. Looking at the genome of coffee, researchers at the University at Buffalo (my alma mater) found that the genes involved in the synthesis of caffeine did not arise all at once. Instead, the genes duplicated multiple times throughout the history of this genus with each duplication coding for another step in the process of producing the caffeine molecule. The interesting part is that each step of this evolutionary process produced a chemical that was itself useful to the plant. The precursor compounds are bitter and toxic to the kinds of animals that like to nibble on the plant. 

As it turns out, the benefits that the plants get from caffeine aren't restricted to defense either. Coffee, as well as other flowering plants such as citrus, produce small amounts of caffeine in their nectar. Researchers at Arizona State University found that bees were 3 times more likely to remember a flowers scent when there was caffeine in the nectar than if there wasn't. This serves a great benefit to the plant producing it because it means that its flowers are much more likely to get pollinated. As it turns out, humans aren't the only species that enjoys a good buzz from caffeine.

Before we get too excited over coffee, we must remember that is definitely has its downside. Worldwide, we humans drink roughly 2.25 billion cups of the stuff every day. In order to produce that much coffee, humans have turned somewhere around 11 million hectares of land into coffee plantations. This has come at an extreme cost to the environment. Also, being a tropical species, the types of habitat used to grow coffee were once lush, tropical rain forests. A majority of coffee consumed around the world is produced in monocultures. Where there once stood towering trees and a lush understory is now an open, chemically-laden field of coffee shrubs. There is hope, however, and it is rising in popularity. 

If you enjoy coffee as much as I do, you should certainly consider switching over to shade grown coffee. I have attached a fair amount of literature at the bottom of this post but the long story short of it is that growing coffee is much less harmful to the environment when it is grown in a forest rather than open plantations. The structural complexity of shade grown coffee farms allows a greater diversity of plant and animal species to coexist with one another. Species diversity and richness are significantly higher on shade grown farms than on open field plantations. 

So, there you have it. Coffee is as complex as it is interesting. We humans are simply lucky to have stumbled across a plant that interacts with our brain chemistry in wonderful ways. Certainly coffee has benefitted in the long run. 

Photo Credit: Ria Tan (http://bit.ly/1pFQD1J)

Further Reading:
http://www.sciencemag.org/content/345/6201/1181.full

https://asunews.asu.edu/20130307_beesandcaffeine

http://s.si.edu/1o6wOaj

http://www.sciencedaily.com/releases/2012/08/120807101357.htm

http://bit.ly/1S6dLVV

Screw Pines, Volcanism, and Diamonds

The association between geology and botany has always fascinated me. The closer you look, the more you can't separate the two. Rocks and minerals influence soil characteristics, which in turn influences which plant species will grow and where, which in turn influences soil properties. Take for instance the case of kimberlite.

Kimberlite is a volcanic rock whose origin is quite intense. Kimberlite is found in the form of large vertical columns, often referred to as pipes. They are the result of some seriously explosive volcanism. Intense heat and pressure builds deep within the mantle until it explodes upward, forming a column of this igneous rock. 

Over long spans of time, these pipes begin to weather and erode. This results in soil that is rich in minerals like magnesium, potassium, and phosphorous. As anyone who gardens can tell you, these are the ingredients of many fertilizers. In Africa where these sorts of pipes are well known, there is a species of plant that seems to take advantage of these conditions. 

It has been coined Pandanus candelabrum and it belongs to a group of plants called the screw pines. They aren't true pines but are instead a type of angiosperm. Now, the taxonomy of the genus Pandanus is a bit shaky. Systematics within the family as a whole has largely been based on fragmentary materials such as fruits and flowers. What's more, for much of its taxonomic history, each new collection was largely regarded as a new species. You might be asking why this is important. The answer has something to do with the kimberlite P. candelabrum grows upon. 

There is something other than explosive volcanic activity that makes kimberlite famous. It is mostly known for containing diamonds. In a 2015 paper, geologist Stephen E. Haggerty made this connection between P. candelabrum and kimberlite. As far as anyone can tell, the plant is a specialist on this soil type. As such, prospectors are now using the presence of this plant as a sort of litmus test for finding diamond deposits. This is why I think taxonomy becomes important. 

If P. candelabrum turns out not to be a unique species but rather a variation then perhaps this discovery doesn't mean much for the genus as a whole. However, if it turns out that P. candelabrum is a truly unique species then this new-found association with diamond-rich rocks may spell disaster. Mining for diamonds is a destructive process and if every population of P. candelabrum signals the potential for diamonds, then the future of this species lies in the balance of how much our species loves clear, shiny chunks of carbon. A bit unsettling if you ask me. 


Further Reading:
http://econgeol.geoscienceworld.org/content/110/4/851.full

Hyperabundant Deer Populations Are Reducing Forest Diversity

Photo by tuchodi licensed under CC BY 2.0

Photo by tuchodi licensed under CC BY 2.0

Synthesizing the effects of white-tailed deer on the landscape have, until now, been difficult. Although strong sentiments are there, there really hasn't been a collective review that indicates if overabundant white-tailed deer populations are having a net impact on the ecosystem. A recent meta-analysis published in the Annals of Botany: Plant Science Research aimed to change that. What they have found is that the overabundance of deer is having strong negative impacts on forest understory plant communities in North America.

White-tailed deer have become a pervasive issue on this continent. With an estimated population of well over 30 million individuals, deer have been managed so well that they have reached proportions never seen on this continent in the past. The effects of this hyper abundance are felt all across the landscape. As anyone who gardens will tell you, deer are voracious eaters.

Tackling this issue isn't easy. Raising questions about proper management in the face of an ecological disaster that we have created can really put a divide in the room. Even some of you may be experiencing an uptick in your blood pressure simply by reading this. Feelings aside, the fact of the matter is overabundant deer are causing a decline in forest diversity. This is especially true for woody plant species. Deer browsing at such high levels can reduce woody plant diversity by upwards of 60%. Especially hard hit are seedlings and saplings. In many areas, forests are growing older without any young trees to replace them.

What's more, their selectivity when it comes to what's on the menu means that forests are becoming more homogenous. Grasses, sedges, and ferns are increasingly replacing herbaceous cover gobbled up by deer. Also, deer appear to prefer native plants over invasives, leaving behind a sea of plants that local wildlife can't readily utilize. It's not just plants that are affected either. Excessive deer browse is creating trophic cascades that propagate throughout the food web.

For instance, birds and plants are intricately linked. Flowers attract insects and eventually produce seeds. These in turn provide food for birds. Shrubs provide food as well as shelter and nesting space, a necessary requisite for healthy bird populations. Other studies have shown that in areas that experience the highest deer densities songbird populations are nearly 40% lower than in areas with smaller deer populations. As deer make short work of our native plants, they are hurting far more than just the plants themselves. Every plant that disappears from the landscape is one less plant that can support wildlife.

Sadly, due to the elimination of large predators from the landscape, deer have no natural checks and balances on their populations other than disease and starvation. As we replace natural areas with manicured lawns and gardens, we are only making the problem worse. Deer have adapted quite well to human disturbance, a fact not lost on anyone who has had their garden raided by these ungulates. Whereas the deer problem is only a piece of the puzzle when it comes to environmental issues, it is nonetheless a large one. With management practices aimed more towards trophy deer than healthy population numbers, it is likely this issue will only get worse.

Photo Credit: tuchodi (http://bit.ly/1wFYh2X)

Further Reading:
http://aobpla.oxfordjournals.org/content/7/plv119.full

http://aobpla.oxfordjournals.org/content/6/plu030.full

http://www.sciencedirect.com/science/article/pii/S0006320705001722

The Darth Vader Begonia

Cue the Imperial March, it is time to talk about the Darth Vader Begonia. This atramentous plant had only been known to the world since 2014. The discovery of this species (as well as two other new Begonia species) occured in Sarawak, on the island of Borneo. This region is a hot spot for plant diversity and this is especially true for begonias. A combination of diverse terrain and varied microclimates have led to an explosion of speciation events resulting in endemic species found nowhere else in the world.

With its leaves so deeply green that they almost appear black and deep red flowers it's not a stretch to imagine why this begonia has been named Begonia darthvaderiana. Until 2014, no one had ever laid eyes on this species, not even the locals. It was found growing in the deep shade of a forested cliff mixed in among other shade-loving vegetation. It is likely that the dark coloration of its leaves enables it to take advantage of what little sunlight makes it down to the forest floor.

Not long after its discovery was reported, something alarming happened. The so-called Darth Vader begonia began appearing for sale online. With a price tag of $80+, this is one expensive little plant. Apparently a plant poacher from Taiwan managed to smuggle some plants out of the country. This is especially upsetting because of its extreme rarity. Despite its namesake, the force is not strong enough to protect this species from greedy collectors. If you have somehow managed to obtain one of these plants, please do everything in your power to propagate it. Plants produced in captivity take pressure off of wild populations.

This was not the only new begonia species to be named after a Star Wars character. A larger species with green and silver leaves was given the scientific name of Begonia amidalae after Queen Amidala. It too is endemic to the region. The future of these plants as well as many others hangs in the balance. A growing human population is putting pressure on the rainforests of Borneo. As more and more forest is lost to development, countless endemic species are disappearing with it. This is yet another example of why land conservation is a must. Please consider lending your support to organizations such as the Rainforest Trust. Together, we can ensure that there are wild spaces left.

CLICK HERE TO HELP LAND CONSERVATION EFFORTS IN BORNEO

Photo Credit: Che-Wei Lin, Shih-Wen Chung, & Ching-I Peng

Further Reading: [1] [2]

 

Insect Eating Bats Eat More Insects Than Birds in Tropical Forests

11879205_10100918207052785_7207423359997217843_o.jpg

If the early bird gets the worm, it is only because we haven't been observing bats the right way, at least not in the rainforests of Central America. It has long been thought that insects such as katydids and caterpillars exhibit night feeding in order to escape day-active birds. This theory has influenced the way in which researchers investigate insect herbivory in tropical forests. However, recent studies have shown that bats, not birds, are doing the bulk of the insect eating in both natural and man-made habitats. 

In order to accurately investigate the role of insectivorous bats play in limiting herbivory in tropical forests, researchers decided to look at the common big-eared bat (Micronycteris microtis). They wanted to find out exactly how much insect predation could be attributed to these nocturnal hunters. As it turns out, 70% of the bats diet consists of plant eating insects, which is quite significant. Extrapolating upwards, it was apparent that we have been overlooking quite a bit.

Photo by Christian Ziegler via Santana SE, Geipel I, Dumont ER, Kalka MB, Kalko EKV (2011) All You Can Eat: High Performance Capacity and Plasticity in the Common Big-Eared Bat, Micronycteris microtis (Chiroptera: Phyllostomidae). PLoS ONE 6(12): e2…

Photo by Christian Ziegler via Santana SE, Geipel I, Dumont ER, Kalka MB, Kalko EKV (2011) All You Can Eat: High Performance Capacity and Plasticity in the Common Big-Eared Bat, Micronycteris microtis (Chiroptera: Phyllostomidae). PLoS ONE 6(12): e28584. doi:10.1371/journal.pone.0028584 licensed under CC BY 2.5

Using special exclosures, researchers set out to try to quantify herbivory rates when bats and birds were excluded. What they found was staggering. When birds were excluded from hunting on trees, insect presence went up 65%. When bats were excluded, insect presence skyrocketed by 153%! What this amounts to is roughly three times as much damage to trees when bats are removed - a significant cost to forests. 

To prove that it wasn't only natural forests that were benefitting from the presence of bats, the researchers then replicated their experiments in an organic cacao farm. Again, bats proved to be the top insect predators, eating three times as many insects than birds. This amounts to massive economic benefits to farmers. Bats have long been viewed as the enemies of both the farm as well as the farmers. Research like this is starting to change such perspectives. 

This certainly doesn't diminish the role of birds in such systems. Instead, it serves to elevate bats to a more prominent stature in the healthy functioning of forest ecosystems. Findings such as these are changing the way we look at these furry fliers and hopefully improving our relationship as well. 

Photo Credit: Christian Ziegler - Wikimedia Commons

Further Reading: [1] [2]
 

On Orchids and Fungi

It is no secret that orchids absolutely need fungi. Fungi not only initiate germination of their nearly microscopic seeds, the mycorrhizal relationships they form supplies the fuel needed for seedling development. These mycorrhizal fungi also continue to keep adult orchids alive throughout their lifetime. In other words, without mycorrhizal fungi there are no orchids. Preserving orchids goes far beyond preserving the plant. Despite the importance of these below-ground partners, the requirements of many mycorrhizal fungi are poorly understood.

Researchers from the Smithsonian Environmental Research Center have recently shone some light on the needs of these fungi. Their findings highlight an important concept in ecology - conservation of the system, not just the organism. Their results clearly indicate that orchid conservation requires old, intact forests.

Their experiment was beautifully designed. They added seeds and host fungi to dozens of plots in both young (50 - 70 years old) and old (120-150 years old) forests. They continued to monitor the progress of the seeds over a period of 4 years. Orchid seeds only germinated in plots where their host fungi were added. This, of course, was not very surprising.

The most interesting data they collected was data on fungal performance. As it turns out, the host fungi displayed a marked preference for older forests. In fact, the fungi were 12 times more abundant in these plots. They were even growing in areas where the researchers had not added them. What's more, fungal species were more diverse in older forests.

The researchers also noted that host fungi grew better and were more diverse in plots where rotting wood was added. This is because many mycorrhizal fungi are primarily wood decomposers. Nutrients from the decomposition of this wood are then channeled to growing orchids (as well as countless other plant species) in return for carbohydrates from photosynthesis. It is a wonderful system that functions at its best in mature forests.

This research highlights the need to protect and preserve old growth forests more than ever. Replanting forests is wonderful but it may be centuries before these forests can ever support such a diversity of life. Also, this stands as a stark reminder of the importance of soil conservation. Less obvious to most is the importance of decomposition. Without dead plant material, such fungal communities would have nothing to eat. Clearing a forest of dead wood can be just as detrimental in the long run as clearing it of living trees.

Research like this is made possible by the support of organizations such as the Native North American Orchid Conservation Center. Head on over to www.indefenseofplants.com/shop and pick up an In Defense of Plants sticker. Part of the proceeds are donated to this wonderful organization, which helps support research such as this! As this research highlights: What is good for orchids is good for the ecosystem.

Further Reading:

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2012.05468.x/abstract;jsessionid=3385C965FF5BA4CB83290005DFD47FD1.f01t02