Brother of Hibiscus

Photo by David Eickhoff licensed under CC BY 2.0

Photo by David Eickhoff licensed under CC BY 2.0

Islands are known for their interesting flora and fauna. Until humans came on the scene, colonization events by different species on different islands were probably rare events, with long stretches of time in between. Because of this, islands are interesting experiments in evolution, often having endemic species found nowhere else in the world. Hawai'i was once home to many different kinds of endemic species. One such group are the Hibiscadelphus.

As you may have gathered by the name, Hibiscadelphus is a relative of hibiscus. The Latin name means "brother of Hibiscus." Unlike the widely splayed flowers of their relatives, Hibiscadelphus flowers never fully open. Instead, they form a tubular structure with a curved lower lip. The genus consists of 7 species. Four of these have gone completely extinct, two are only maintained in cultivation, and the remainder is barely holding on. There have been attempts to reestablish some species into other portions of their range but due to hybridization, these attempts were ceased. In my opinion this is a shame. In this case, a hybrid is better than losing both parental species and it would still be uniquely Hawaiian.

Why are Hibiscadelphus so rare? Well, humans have a sad history when it comes to colonizing islands. They bring with them a multitude of invasive species at a rate in which the local flora and fauna cannot adapt. They change the land through cultivation and development as well as by subduing natural fire regimes. Also, they wipe out keystone species, which causes a ripple effect throughout the environment. Hibiscadelphus have faced all of these threats and more. Pigs and rats eat their seeds, their habitats have been turned over for the ever-increasing human population, fires have been stopped, and some of their pollinators, the endemic honeycreepers, have also been driven to extinction thanks to avian pox and malaria. Sadly, this is a story that repeats itself time and time again all over the world. For now, the future of Hibiscadelphus is rather bleak.

Photo Credit: David Eickhoff

Further Reading:

http://bit.ly/2ao84X1

http://bit.ly/2aEfpkn

The Ghosts of Florida

Photo by NC Orchid licensed under CC BY-NC 2.0

Photo by NC Orchid licensed under CC BY-NC 2.0

 

There are ghosts haunting the Florida Everglades. I'm not talking about the metaphysical kind either. The ghosts I am talking about come in the form of a plant. A strange, mystical, and beautiful plant at that. Growing amongst things like panthers, snakes, palms, ferns, and more mosquitoes than I care to imagine are these rare and endangered plants which have been made famous by court cases, books, and even a Hollywood movie.

If you haven't guessed it by now, I am talking about the ghost orchid (Dendrophylax lindenii). In what is one of Nicolas Cage's best onscreen roles (a close second to Raising Arizona), these orchids were made famous the world over. Based on the book "The Orchid Thief" by Susan Orlean, the movie takes a lot of creative licenses with the story of these orchids.

Ghosts orchids are epiphytes. In Flordia, upwards of 80% of them can be found growing on the bark of pop ash trees (Fraxinus caroliniana). Finding them can be tricky unless you know what to look for. Ghost orchids belong to a group of orchids that have forgone leaf production. No, they are not parasites like Corallorhiza. Instead, they photosynthesize through their long, ambling roots. Pores along their length allow for gas exchange. For most of the year all you will ever see of a ghost is a tangle of roots growing among the moss and lichen on the bark of a tree. 

When a ghost decides to flower, it is easy to see where all the hype comes from. Large white flowers shoot out from the center of the roots, each one with its own twisted pair of tendrils on the lip, which are said to resemble the ghostly outline of a frog jumping through the air. Each flower is also equipped with a long nectar spur. This along with the white coloration and the fact that each flower is most fragrant at night points to the identity of the ghost orchids sole pollinator, the giant sphinx moth. It has a long proboscis that is exactly the length of that nectar spur. No other organism has what it takes to pollinate a ghost. 

The presence of the ghost orchid in southern Florida has everything to do with water. Predominantly a species of the Caribbean, ghost orchids cannot handle frost. In the Everglades, ghosts grow in and around topographical features known as sloughs. Sloughs are ditches that are filled with water for most of the year. Because water has a high specific heat, the sloughs keep the surrounding area cool in the summer and warm in the winter. When Florida experiences hard frosts, these sloughs never get below freezing. This means that these regions are essentially tropical. All these factors combine to make southern Florida the most northerly spot you will ever see a ghost (and many other plant species) growing in the continental United States. 

Sadly, ghost orchids are not doing so hot in the wild. The habitat they rely upon is disappearing at an alarming rate. If you have been to Florida in the last 100 years you can certainly understand. Over half of the Everglades have been drained and developed since 1900 with plenty more of it degraded beyond any hope of repair. Invasive species run amok for the same reasons that the native plants do so well, crowding out some of Florida's most unique flora and fauna. 

To add insult to injury, poaching of ghost orchids is serious business. Despite its difficulty in cultivation and the fact that most wild ghosts quickly die in captivity, there are those out there that will still pay insane prices to have a ghost in their collection. Nursery produced specimens are becoming more common, so with time this should alleviate some of that pressure. Still, there is no end to the senseless greed of some orchid fanatics. 

There is hope on the horizon. Researchers are starting to unlock some of the secret to ghost orchid reproduction. Plants are now being grown from seed in specialized labs. In time, this new generation of ghost orchids will be planted back into southern Florida in hopes of increasing population sizes. 

Further Reading:
http://bit.ly/24NiqT9

http://bit.ly/1XTqh38

http://bit.ly/21jegSg

http://bit.ly/1PZlKJu

The Endangered Running Buffalo Clover

 

Endangered species come in all different shapes and sizes. Though the average person on the street can readily cite charismatic animals species such as the giant panda or the white rhino, few folks ever realize that many of the world's plants are at risk of extinction. In fact, the latest reports show that one in five plant species are in danger of disappearing forever. They aren't all charismatic species like orchids either, some of the most endangered plants are often the most ignored. They simply don't find their way into conversations about conservation. 

One prime example of such an imperiled plant is the running buffalo clover (Trifolium stoloniferum). This lovely little clover once ranged from Arkansas, through Illinois and Indiana, all the way to Ohio and West Virginia. It was a species of open disturbed areas in prairies and forests. It enjoyed rich soils and probably followed in the wake of the large herds of bison and regular fires that once shaped the countryside. Another interesting aspect of this clover's ecology is that it apparently does not fix nitrogen. It lacks the rhizobial associates that make legumes famous. 

The loss of the bison from most of its range coupled with rampant habitat destruction spelled disaster for the running buffalo clover. It was thought to be extinct for nearly a century until 1983 when a single population was discovered in West Virginia. Since then scattered populations have been found, however, these are few and far between. As such, it is now considered a federally endangered species. 

The continued survival of the running buffalo clover is completely tied to proper land management. Without a natural disturbance regime, this lovely little plant is quickly overtaken by more aggressive vegetation. Gone are the days of the roaming buffalo and natural fire regimes. 

Luckily this species was able to garnish enough attention to earn it some protection. However, for far too many plant species this is simply not the case. Until we change the kinds of conversations we are having about plants and habitat in general, we stand to lose more plant species than I care to imagine. This in turn will have rippling effects through the entire ecosystem. So, today I want you to think about the running buffalo clover as a stark reminder of just how important conservation can be. 

Photo Credit: Andrew Lane Gibson (http://bit.ly/25Sb6f1)

Further Reading:
http://1.usa.gov/1sB7oo9

Enigmatic Neviusia

Photo by Philip Bouchard licensed under CC BY-NC-ND 2.0

Photo by Philip Bouchard licensed under CC BY-NC-ND 2.0

Neviusia. The first time I heard it mentioned I was certain the conversation had switched from reality to the world of Harry Potter. I was wrong. The name belongs to a genus of plants that are totally real. What's more, the natural history of this small group is absolutely fascinating.

The genus Neviusia is comprised of two extant species. N. alabamensis is endemic to a small region of the southeastern United States around northwest Georgia and the Ozark Mountains. Its cousin, N. cliftonii, was discovered in 1992 and is endemic to a small area around "Lake" Shasta in California. Fewer than 20 populations have been found and of them, six were flooded to create "Lake" Shasta. It would seem very strange that both species in this genus are not only endemic to extremely localized regions but also completely disjunct from one another. This is only the beginning.

Whereas fruits have been described for N. cliftonii, none have been reported in N. alabamensis. Ever. Thanks to genetic analysis, populations of both plants are thought to be entirely clonal. High rates of pollen sterility are to blame. Why this is the case is hard to say. It is thought that the genus Neviusia is a relict of the early Cenozoic. Fossil evidence from British Columbia suggest that this genus was once more diverse and more wide spread, having gradually declined to its current limited distribution. The Pleistocene was likely the last straw for these plants, being corralled into small refugia of suitable habitat by the glaciers. Lack of seed production (perhaps due to genetic drift) meant that these two species were to never recolonize their former range. At least not without help...

Since their discovery, these two species have garnered some attention. Like Franklinia, Neviusia have become a sort of horticultural curiosity and have since been out-planted in a variety of locations. My first and only encounter with Neviusia occurred in a conservation garden. Despite their popularity among researchers and gardeners alike, it is unlikely that Neviusia will ever reclaim even a fraction of their former glory. Instead, they remain as endemic reminders of a bygone era. Despite their limited range I think it is important to remember just how long they have survived in North America. After millions of years of survival and persistence, their biggest threat is now us.

Photo Credit: Philip Bouchard (http://bit.ly/1WpElzX)

Further Reading:
http://bit.ly/1NqFdlq

http://bit.ly/1ZFEa1G

http://bit.ly/1UT2WfF

http://bit.ly/24OshNM

http://bit.ly/1TFblOd

http://bit.ly/1rWecMq

Lovely Lomatium

I officially learned how to botanize in the American west. Before then my skills were limited to "hey, look at the pretty flower" and then Googling my way to an answer. As such, I have a real soft spot for western botany. Despite the fact that I have not had the chance to exercise those muscles in some time, I nonetheless revisit the few groups that I do remember via the massive photo collection I built up during my tenure in Wyoming. One group I am particularly fond of are members of the genus Lomatium.

I had never really paid attention to members of the carrot family. I always associated that group with the Queen Anne's lace (Daucus carota) I encountered growing in ditches. In other words, I found them boring. All of that changed when I moved to Wyoming. Spring was slow to start that year. I mean really slow. I thought I had it bad in western New York where spring snow storms and freezing temperatures often delayed plant growth well into May. That year in Wyoming, the last snow storm hit on June 29th. Because of this, most of the plants we were trying to locate were biding their time underground waiting for favorable weather to kick off the growing season.

By mid June I was starving for plant life. I needed to see some greenery. That is when I first laid eyes on a Lomatium. They began appearing as tight clusters of highly dissected, rubbery leaves. Once I knew what to look for, I began finding them throughout the foothill regions where we were working. Since I was just getting familiar with the local flora, I was hard pressed to key anything out. Instead I just waited for flowers. I didn't have to wait very long. 

Soon entire hillsides were covered in little yellow umbels. They were squat plants, never growing too high. The constant winds that whipped across the terrain made sure of that. It soon became apparent that Lomatiums don't waste any time. Water is limited in these habitats and they have to make quick work of it while it is available. Another interesting thing to note is the sex of the flowers. Generally when I see a dense umbel like that, I just assumed they were hermaphroditic. In at least some Lomatium, this is actually not the case. The sex of the flowers is determined by age. 

Smaller plants tend to produce male flowers, whereas larger plants will produce hermaphrodites. This makes a lot of sense as producing only pollen requires much fewer resources than producing ovaries and eventually seeds. Needless to say, larger plants also produce the most seed and are often the driving force in population persistence and growth. The seeds themselves are quite interesting. They are winged and often quite fleshy until they dry. Wind is the predominant seed dispersal mechanism and there is no shortage of wind in sagebrush country. 

The phylogeny of this genus is quite confusing. I certainly haven't gotten my head wrapped around it. Individuals are notoriously hard to identify both physically and genetically. There is a large degree of genetic variation between plants and "new species" are still being discovered. At the same time, there is also a lot of endemism and some species like Lomatium cookii and Lomatium dissectum are of conservation concern. Aside from habitat destruction, over-grazing, and limited ranges, over-collection for herbal uses poses considerable threat to many species. 

Further Reading:

http://bit.ly/1VWvMfV

http://bit.ly/1VE24MF

http://bit.ly/1WUzohQ

http://bit.ly/1qXSVS8

http://bit.ly/245NDpH

The Fall of Corncockle

Photo by Sonnentau licensed under CC BY-NC 2.0

Photo by Sonnentau licensed under CC BY-NC 2.0

This switch from more traditional farming practices to industrialized monocultures has left a damaging legacy on ecosystems around the globe. This is especially true for unwanted plants. Species that once grew in profusion are now sprayed and tilled out of existence. Nowhere has this been better illustrated than for a lovely little plant known commonly as the corncockle (Agrostemma githago). 

This species was once a common weed in European wheat fields. Throughout much of the 19th and early 20th century, it was likely that most wheat sold contained a measurable level of corncockle seed. Its pink flowers would have juxtaposed heavily against the amber hue of grain. Indeed, its habit of associating with wheat has lead to its introduction around the globe. It can now be found growing throughout parts of North America, Australia, and New Zealand. 

However, in its home range of Europe, the corncockle isn't doing so well. The industrialization of farming dealt a huge blow to corncockle ecology. The broad-scale application of herbicides wreaked havoc on corncockle populations. Much more detrimental was the switch to winter wheat, which caused a decoupling between harvest time and seed set for the corncockle. Whereas it once synced quite nicely with regular wheat harvest, winter wheat is harvested before corncockle can set seed. As such, corncockle has become extremely rare throughout its native range and was even thought to be extinct in the UK. 

A discovery in 2014 changed all of that. National Trust assistant ranger Dougie Holden found a single plant flowering near a lighthouse. Extensive use of field guides and keys confirmed that this plant was indeed a corncockle, the first seen blooming in the UK in many decades. It is likely that the sole plant grew from seed churned up by vehicle traffic the season before. 

Photo Credit: sonnentau (bit.ly/1qo3XQK)

Further Reading:
Clapham, A.R., Tutin, T.G. and Warburg, E.F. 1968. Excursion Flora of the British Isles. Cambridge University Press

An Underground Orchid

Photo by Jean and Fred licensed under CC BY 2.0

Photo by Jean and Fred licensed under CC BY 2.0

Are you ready to have your mind blown away? What you are looking at here is not some strange kind of mushroom, though fungus is involved. What you are seeing is actually the inflorescence of a parasitic orchid from Australia that lives and blooms underground!

Meet Rhizanthella gardneri. This strange little orchid is endemic to Western Australia and it lives, blooms, and sets seed entirely underground. It is extremely rare, with only 6 known populations. Fewer than 50 mature plants are known to exist. This is another one of those tricky orchids that does not photosynthesize but, instead, parasitizes a fungus that is mycorrhizal with the broom honey myrtle (Melaleuca uncinata). To date, the orchid has only been found under that specific species of shrub. Because of its incredibly unique requirements, its limited range, and habitat destruction, R. gardneri is critically endangered.

The flowers open up a few centimeters under the soil. They are quite fragrant and it is believed that ants, termites, and beetles are the main pollinators. The resulting seeds take up to 6 months to mature and are quite fleshy. It is hypothesized that some sort of small marsupial eats them and consequently distributes them in its droppings. Either way, the chances of successful sexual reproduction for this species are quite low. Because of this, R. gardneri also reproduces asexually by budding off daughter plants.

Despite not photosynthesizing, this orchid is quite unique in that it still retains chloroplasts in its cells. They are a very stripped down form of chloroplast though, containing about half of the genes a normal chloroplast would. It is the smallest known chloroplast genome on the planet. This offers researchers a unique opportunity to look deeper into how these intracellular relationships function. The remaining chloroplast genes code for 4 essential plant proteins, meaning chloroplasts offer functions beyond just photosynthesis.

I am so amazed by this species. I'm having a hard time keeping my jaw off the ground. What an amazing world we live in. If you would like to see more pictures of R. gardneri, please make sure to check out the following website:
http://www.arkive.org/underground-orchid/rhizanthella-gardneri/

Photo Credit: Jean and Fred Hort

Further Reading:
http://www.sciencedaily.com/releases/2011/02/110208101337.htm

http://www.eurekalert.org/pub_releases/2011-02/uowa-wai020711.php

http://www.environment.gov.au/cgi-bin/sprat/public/publicspecies.pl?taxon_id=20109

The Dawn Redwood

The dawn redwood (Metasequoia glyptostroboides) is one of the first trees that I learned to identify as a young child. My grandfather had one growing in his backyard. I always thought it was a strange looking tree but its low slung branches made for some great climbing. I was really into paleontology back then so when he told me this tree was a "living fossil" I loved it even more. It would be many years before I would learn the story behind this interesting conifer.

Photo by Ruth Hartnup licensed under CC BY 2.0

Photo by Ruth Hartnup licensed under CC BY 2.0

Along with the coast redwood (Sequoia sempervirens) and giant sequoia (Sequoiadendron giganteum), the dawn redwood makes up the subfamily Sequoioideae. Compared to its cousins, the dawn redwood is the runt, however, with a max height of around 200 feet (60 meters), a mature dawn redwood is still an impressive sight.

Until 1944 the genus Metasequoia was only known from fossil evidence. As with the other redwood species, the dawn redwood once realized quite a wide distribution. It could be found throughout the northern regions of Asia and North America. In fact, the fossilized remains of these trees make up a significant proportion of the fossils found in the Badlands of North Dakota.

Fossil evidence dates from the late Cretaceous into the Miocene. The genus hit its widest distribution during a time when most of the world was warm and tropical. Evidence would suggest that the dawn redwood and its relatives were already deciduous by this time. Why would a tree living in tropical climates drop its leaves? Sun.

Regardless of climate, axial tilt nonetheless made it so that the northern hemisphere did not see much sun during the winter months. It is hypothesized that the genus Metasequoia evolved its deciduous nature to cope with the darkness. Despite its success, fossil evidence of this genus disappears after the Miocene. For this reason, Metasequoia was thought to be an extinct lineage.

Photo by Georgialh licensed under CC BY-SA 4.0

Photo by Georgialh licensed under CC BY-SA 4.0

All of this changed in 1943 when a Chinese forestry official collected samples from a strange tree growing in Moudao, Hubei. Though the samples were quite peculiar, World War II restricted further investigations. In 1946, two professors looked over the samples and determined them to be quite unique indeed. They realized that these were from a living member of the genus Metasequoia.

Thanks to a collecting trip in 1948, seeds of this species were distributed to arboretums around the world. The dawn redwood would become quite the sensation. Everyone wanted to own this living fossil. Today we now know of a few more populations. However, most of these are quite small, consisting of around 30 trees. The largest population of this species can be found growing in Xiaohe Valley and consists of around 5,000 individuals. Despite its success as a landscape tree, the dawn redwood is still considered endangered in the wild. Demand for seeds has led to very little recruitment in the remaining populations.

Photo Credit: [1] [2] [3]

Further Reading: [1] [2]
 

 

Straight out of Seussville

Photo by Derek Keats licensed under CC BY-NC-ND 2.0

Photo by Derek Keats licensed under CC BY-NC-ND 2.0

At first glance this photo seems fake. However, I assure you this is indeed a real plant. Meet Pachypodium namaquanum, the elephant's trunk. This bizarre member of the family Apocynaceae can be found growing in the dry rocky deserts of Richtersveld and southern Namibia in South Africa. Although it may seem better suited for life in a Dr. Seuss book, I assure you that all aspects of this plants strange appearance enable it to live in some of the harshest climates possible for a plant.

During the spring and summer months (November - March) temperatures in these regions can reach upwards of 50°C (122°F). It doesn't rain much either. What little water this plant does receive comes in the form of fog rolling in from the coast. Oddly enough, the elephant's trunk seems to prefer growing on the most exposed slopes possible, favoring spots where sun and wind are at their worst.

Photo by Rafael Medina licensed under CC BY-NC-ND 2.0

Photo by Rafael Medina licensed under CC BY-NC-ND 2.0

As such, everything about P. namaquanum seems to be focused on water conservation. The most obvious feature is that swollen trunk, which serves as a water storage organ. It is no surprise then that this valuable storage organ is covered in spines. These "trees" remain leafless during this time as well. This keeps valuable water reserves from evaporating in the summer heat.

There is at least one aspect of this plants physiology that seems to stand in the face of the harsh desert environment in which it lives. Anyone who has observed these plants in the wild may have noticed that their tips all seem to be pointing northwards. What's more, this inclination usually ranges between a 50° and 60° angle. This is strange because most desert plants usually prefer to minimized their exposure to solar radiation rather than face it head on.

The reason for this becomes more apparent with the onset of fall. Come April, the climate of this region becomes a bit more mild. Also, the sun begins to dip below the horizon for longer periods of time. It is around this time that the plant will produce leaves. A single whorl of velvety leaves emerges from the very tip of the stem. This is also the time in which it reproduces. Attractive yellow and red flowers spray out from between the leaves.

Because the success of the elephant's trunk is reliant on this relatively short growth period, the plant aims to maximize its gains. This is where the northern inclination comes into play. Such an orientation serves to maximize the amount of sunlight the leaves and the flowers receive. In this way, the leaves and flowers absorb twice as much sunlight than if they were vertically oriented. It is thought that the sunlight warms the flowers as well as brightens their display, making them impressive targets for local pollinators.

Like most members of this family, seeds are produced in pods and are borne on silky hairs. The slightest breeze can carry them a great distance. Though germination comes relatively easy to this species, it is nonetheless declining in the wild. Mining and livestock have taken up a lot of their available habitat. Poaching is second to these threats as its strange appearance makes it highly sought after by greedy gardeners.

Photo Source: [1] [2] [3] [4]

Further Reading: [1] [2] [3]

The Fanged Pitcher Plant of Borneo

As mammals, and even more so as apes, we tend to associate fangs with threats. The image of two dagger-like teeth can send chills up ones spine. Perhaps it is fitting then that a carnivorous plant from a southeast Asian island would sport a pair of ominous fangs. Friends, I present to you the bizarre fanged pitcher plant (Nepenthes bicalcarata).

This ominous-looking species is endemic to Borneo and gets its common name from the pair of "fangs" that grow from the lid, just above the mouth of the pitcher. Looks aren't the only unique feature of this species though. Indeed, the entire ecology of the fanged pitcher plant is fascinatingly complex.

Lets tackle the obvious question first. What is up with those fangs? There has been a lot of debate among botanists as to what function they might serve. Some have posited the idea that they may deter mammals from feeding on pitcher contents. Others see them as mere artifacts of development and attribute no function to them whatsoever.

In reality they are involved in capturing insects. The fangs bear disproportionately large nectaries that lure prey into a precarious position just above the mouth of the pitcher. Strangely enough, this may have evolved to compensate for the fact that the inside of the pitchers are not very slippery. Whereas other pitcher plant species rely on waxy walls to make sure prey can't escape, the fanged pitcher plant has relatively little waxy surface area within its pitchers. What's more, the pitchers are not very effective at capturing prey unless they have been wetted by rain. The fluid within the pitchers also differs from other Nepenthes in that it is not very acidic, contains few digestive enzymes, and isn't very viscous. Why?

Worker ants cleaning the pitcher (left) and an ant brood chamber inside of the pitcher tendril (right). Photo by Bazile, V., J.A. Moran, G. Le Moguédec, D.J. Marshall & L. Gaume 2012. A carnivorous plant fed by its ant symbiont: a unique multi-f…

Worker ants cleaning the pitcher (left) and an ant brood chamber inside of the pitcher tendril (right). Photo by Bazile, V., J.A. Moran, G. Le Moguédec, D.J. Marshall & L. Gaume 2012. A carnivorous plant fed by its ant symbiont: a unique multi-faceted nutritional mutualism. PLoS ONE 7(5): e36179. doi:10.1371/journal.pone.0036179 licensed under CC BY 2.5

The answer lies with a specific species of ant. The fanged pitcher plant is the sole host of a carpenter ant known scientifically as Camponotus schmitzi. The tendrils that hold the pitchers themselves are hollow and serve as nest sites for these ants. Ant colonies take up residence in the tendrils and will hunt along the insides of the pitchers. In fact, they literally go swimming in the pitcher fluid to find their meals!

This is why the pitcher fluid differs so drastically from other Nepenthes. The fanged pitcher plant actually does very little of its own digestion. Instead, it relies on the resident ant colony to subdue and breakdown large prey. As a payment for offering the ants room and board, the ants help the plant feed via the breakdown of captured insects (which are often disposed of in the pitchers) and the deposition of nitrogen-rich feces. Indeed, plants without a resident ant colony are found to be significantly smaller and produce fewer pitchers than those with ants. The ants also protect and clean the plant, removing fungi and hungry insect pests.

Sadly, like many other species of Nepenthes, over-harvesting for the horticultural trade as well as habitat destruction have caused a decline in numbers in the wild. With species like this it is so important to make sure you are buying nursery grown specimens. Never buy a wild collected plant! Also, if you are lucky enough to grow these plants, propagate them! Only by reducing the demand for wild specimens can we hope of curbing at least some of the poaching threats. Also, what better way to get your friends into gardening than by sharing with them amazing carnivores like the fanged pitcher plant.

Female flowers

Female flowers

Photo Credit: [1]
Further Reading: [1] [2] [3] [4] [5]

Tropical Oaks - Lessons in Biogeography from a Giant Acorn

12376154_1260382873988575_685493213411905846_n.jpg

Seeing the nut of Quercus insignis in person for the first time was a peculiar experience. I didn't know acorns came that big! What was even stranger was encountering this species in the tropics. I thought that in leaving my temperate home behind, I had left trees such as oaks behind as well. Thus, picking up this gigantic acorn was a challenge to my ignorance of tropical forest diversity. What it did for me was ignite a fury of questions regarding the biogeography of the genus Quercus.

Quercus insignis is native from Mexico to Panama. It is a member of the white oak grouping and, despite having one of the largest acorns of any oak species, relatively little is known about this species. What we do know is that it is in trouble. It is considered critically endangered in Mexico and near threatened in Guatemala and Panama with a remaining stronghold in Nicaragua. Habitat loss and changing environmental conditions seem to be at the core of its disappearance.

One big question was looming over me. What was an oak doing this far south? Call it a northern bias but I have always associated oaks with more temperate climes. I needed to get over this. My investigation lead me to some very interesting work done on the family to which oaks belong - Fagaceae. Based on some incredible paleontological and genetic detective work, we now know that Fagaceae originated in Asia. The first fossil evidence of a member of this family dates back some 100 million years, during the early part of the Cretaceous.

At this time, the continents of Asia, Europe, and North America were still connected. Some 60 million years ago, the genus Quercus diverged from Castanea. They were also starting to radiate across the Northern Hemisphere. The first fossil evidence of oaks in North America comes from Paleogene deposits dated to 55 to 50 million years before present. This is when the oaks really started to hit their stride.

Between 22 and 3 million years ago the genus Quercus underwent numerous speciation events. The new terrain of North America must have presented countless opportunities for oaks because they quickly became the most specious genus of all the Fagaceae. This radiation was particularly fruitful in what would become the U.S. and Mexico. Of the roughly 220 species that exist in this region today, 160 occur in Mexico, and of those, 90 species are endemic.

This brings us to the tropics. Evergreen and semi-evergreen oaks have done quite well in this region. However, their astounding diversity quickly drops once you hit the isthmus of Panama. South America is home to only one species of oak. What happened that limited the oaks reign south of the equator?

To put it simply, geology happened. For much of the Earth's history, North and South America shared no connection. Though the exact time frame is debated, tectonic forces joined the two continents some 4.5 million years ago. The Great American Interchange had begun. The two continents were able to freely exchange flora and fauna like never before. The migrations are thought to have been a bit lopsided. Tropical flora and fauna did not do as well farther north but temperate flora and fauna seemed to find warmer climes more favorable. As such, South America gained disproportionately more biodiversity as a result.

This pattern did not hold true for everything though. For the oaks, only one species (Quercus humboldtii) made it through. As such, the genus remains a dominant fixture of the Northern Hemisphere. Sadly, much of this diversity is at serious risk of being lost forever. Like the magnificent Quercus insignis, many of the world's oaks are on the decline. Disease, habitat loss, and countless other issues plague this genus. A 100 million year old journey is quickly being undone in less than two centuries. The hand of man is time and again proving to be a force unrivaled in the biological world.

Leaf Credit: http://www.oaknames.org/

Further Reading:
http://www.sciencedirect.com/science/article/pii/S0378112713006580

A Very Strange Sedge

I am quickly realizing that there are some plants out there that I simply cannot prepare myself to see. Something about their look, growth habit, or location just crosses some wires in my brain and causes me a few minutes of confusion until I can regain some composure. Fraser's sedge (Cymophyllus fraserianus) is one such plant.

I had briefly read about this species on a trail map website. The author mentioned there would be some plants worth seeing in the area and Fraser's sedge was one of them. Not being particularly good at gramminoids I figured I probably wouldn't know it even if I had seen it. Was I ever wrong. Fraser's sedge may very well be impossible to miss.

It grows rather large and its long strap-like leaves are more reminiscent of some sort of epiphytic orchid or limp bromeliad. Indeed, Fraser's sedge is truly unique. It is the only member of its genus and experts believe it to be a very old, relictual lineage. It is only found growing on rich mountain slopes in the Appalachian Mountains. It is also quite endangered throughout much of its range due to habitat fragmentation.

Aside from its foliage, Fraser's sedge also produces what are quite possibly the most attractive flowers of any sedge (opinion of course), which are produced in early spring. They are rather unique in that they are stark white. This has led some to believe that this specie is insect pollinated. Whether or not this is a true pollinator syndrome or just a casual observation is yet to be seen. Either way, encountering this plant in flower would be a truly special occurrence.

Due to habitat loss, there is a lot of fear that remaining isolated populations of this wonderful endemic are at increased risk of genetic bottlenecking. DNA analysis of some populations offer hope as the more restricted populations still show signs of ample genetic diversity. Still, time may prove otherwise as more and more individuals are lost to careless development. In the mean time, efforts are being made at conserving this species into the future.

Further Reading:
http://plants.usda.gov/core/profile?symbol=CYFR4

http://www.naturalheritage.state.pa.us/factsheets/15169.pdf

http://link.springer.com/article/10.1023/B:GENE.0000041049.91375.8c#/page-1

http://www.jstor.org/stable/4031748?seq=1#page_scan_tab_contents

http://www.georgiawildlife.com/sites/default/files/uploads/wildlife/nongame/pdf/accounts/plants/cymophyllus_fraserianus.pdf

http://www.georgiawildlife.com/sites/default/files/uploads/legacy_assets/Documents/cymofr.pdf

Plight of the Panda: a bamboo story

There are few creatures more iconic than the giant panda. These bears are the poster children for conservation movements around the world. Unlike their ursine relatives, pandas have abandoned carnivory for a diet that consists almost entirely of bamboo. In the light of human destruction, specialist lifestyles like the pandas are a risky strategy. It doesn't take much to upset such obligate relationships and humans are quite proficient at doing just that. However, the plight of the giant panda has just as much to do with the ecology of its food source as it does man-made destruction of its habitat.

Essentially giant grasses, the bamboo tribe consists of over 1,400 species worldwide. Not only are bamboo some of the tallest grasses in the world, they are also some of the fastest growing plants. Some have been known to grow 250 cm (90 in) in only 24 hours! As typical with grasses, bamboo can reproduce via underground rhizomes, forming dense stands of clones. Entire forests can be made up of the clones of only a few individuals.

The strangest part of bamboo ecology is that they rarely flower. A typical bamboo will live for 20 to 60 years before flowering, with some species taking well over 100 years. As such, bamboo experiences mast flowering events, with entire bamboo forests flowering all at once. After flowering and setting seed, the bamboo dies. Entire bamboo forests are lost in only a matter of weeks.

There have been many hypotheses put forth to explain this and while each has likely played a role in the evolution of this strategy, these mast flowering and subsequent death of bamboo forests probably serve to ensure the survival of the next generation. If the adults were to live through flowering and seed set, it is likely that the thick canopy of the parents would be too much for young seedlings to overcome. What's more, mass die offs create a significant fuel load for fires to sweep through. However catastrophic a fire may be, it reduces competition for bamboo seedlings.

Before humans fragmented their habitat, giant pandas had no trouble dealing with mass bamboo die offs. They simply migrated to a new bamboo forest. Anymore today, they cannot do that. When a bamboo forest flowers and dies, pandas in that area have nowhere to go. They simply starve to death. Because of this, pandas now occupy a mere fraction of their former range. What intact bamboo forests remain are restricted to the highlands of the Sichuan, Shaanxi, and Gansu provinces.

Despite considerable success in the captive breeding of pandas, there is simply not enough habitat to support their recovery in the wild. Because of this, captive breeding programs have come under harsh criticism. It has been argued that the massive amounts of money spent on captive breeding of pandas could be spent on habitat conservation projects elsewhere. No matter where you stand on the subject, there is no denying that pandas fall under the charismatic megafauna syndrome. They captivate the hearts and minds of people all over the globe. They also encourage the masses to open up their wallets. Sadly, it is probably too late giant pandas in the wild. If anything else, they certainly serve as a stark reminder of the importance of habitat conservation on a large scale.

Photo Credit: Abby Wood, Smithsonian's National Zoo (http://bit.ly/1qDX21K)

Further Reading:

http://www.jstor.org/stable/10.1086/303243?seq=1#page_scan_tab_contents

http://www.completebamboo.com/bamboo_behaviors.html

The Darth Vader Begonia

Cue the Imperial March, it is time to talk about the Darth Vader Begonia. This atramentous plant had only been known to the world since 2014. The discovery of this species (as well as two other new Begonia species) occured in Sarawak, on the island of Borneo. This region is a hot spot for plant diversity and this is especially true for begonias. A combination of diverse terrain and varied microclimates have led to an explosion of speciation events resulting in endemic species found nowhere else in the world.

With its leaves so deeply green that they almost appear black and deep red flowers it's not a stretch to imagine why this begonia has been named Begonia darthvaderiana. Until 2014, no one had ever laid eyes on this species, not even the locals. It was found growing in the deep shade of a forested cliff mixed in among other shade-loving vegetation. It is likely that the dark coloration of its leaves enables it to take advantage of what little sunlight makes it down to the forest floor.

Not long after its discovery was reported, something alarming happened. The so-called Darth Vader begonia began appearing for sale online. With a price tag of $80+, this is one expensive little plant. Apparently a plant poacher from Taiwan managed to smuggle some plants out of the country. This is especially upsetting because of its extreme rarity. Despite its namesake, the force is not strong enough to protect this species from greedy collectors. If you have somehow managed to obtain one of these plants, please do everything in your power to propagate it. Plants produced in captivity take pressure off of wild populations.

This was not the only new begonia species to be named after a Star Wars character. A larger species with green and silver leaves was given the scientific name of Begonia amidalae after Queen Amidala. It too is endemic to the region. The future of these plants as well as many others hangs in the balance. A growing human population is putting pressure on the rainforests of Borneo. As more and more forest is lost to development, countless endemic species are disappearing with it. This is yet another example of why land conservation is a must. Please consider lending your support to organizations such as the Rainforest Trust. Together, we can ensure that there are wild spaces left.

CLICK HERE TO HELP LAND CONSERVATION EFFORTS IN BORNEO

Photo Credit: Che-Wei Lin, Shih-Wen Chung, & Ching-I Peng

Further Reading: [1] [2]

 

On Orchids and Fungi

It is no secret that orchids absolutely need fungi. Fungi not only initiate germination of their nearly microscopic seeds, the mycorrhizal relationships they form supplies the fuel needed for seedling development. These mycorrhizal fungi also continue to keep adult orchids alive throughout their lifetime. In other words, without mycorrhizal fungi there are no orchids. Preserving orchids goes far beyond preserving the plant. Despite the importance of these below-ground partners, the requirements of many mycorrhizal fungi are poorly understood.

Researchers from the Smithsonian Environmental Research Center have recently shone some light on the needs of these fungi. Their findings highlight an important concept in ecology - conservation of the system, not just the organism. Their results clearly indicate that orchid conservation requires old, intact forests.

Their experiment was beautifully designed. They added seeds and host fungi to dozens of plots in both young (50 - 70 years old) and old (120-150 years old) forests. They continued to monitor the progress of the seeds over a period of 4 years. Orchid seeds only germinated in plots where their host fungi were added. This, of course, was not very surprising.

The most interesting data they collected was data on fungal performance. As it turns out, the host fungi displayed a marked preference for older forests. In fact, the fungi were 12 times more abundant in these plots. They were even growing in areas where the researchers had not added them. What's more, fungal species were more diverse in older forests.

The researchers also noted that host fungi grew better and were more diverse in plots where rotting wood was added. This is because many mycorrhizal fungi are primarily wood decomposers. Nutrients from the decomposition of this wood are then channeled to growing orchids (as well as countless other plant species) in return for carbohydrates from photosynthesis. It is a wonderful system that functions at its best in mature forests.

This research highlights the need to protect and preserve old growth forests more than ever. Replanting forests is wonderful but it may be centuries before these forests can ever support such a diversity of life. Also, this stands as a stark reminder of the importance of soil conservation. Less obvious to most is the importance of decomposition. Without dead plant material, such fungal communities would have nothing to eat. Clearing a forest of dead wood can be just as detrimental in the long run as clearing it of living trees.

Research like this is made possible by the support of organizations such as the Native North American Orchid Conservation Center. Head on over to www.indefenseofplants.com/shop and pick up an In Defense of Plants sticker. Part of the proceeds are donated to this wonderful organization, which helps support research such as this! As this research highlights: What is good for orchids is good for the ecosystem.

Further Reading:

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2012.05468.x/abstract;jsessionid=3385C965FF5BA4CB83290005DFD47FD1.f01t02

The Plight of the Venus Fly Trap

Photo by NC Orchid licensed under CC BY-NC 2.0

Photo by NC Orchid licensed under CC BY-NC 2.0

The fact that endangered plants do not receive the same protection as animals speaks volumes towards our perception of their importance. If one were to gun down an endangered bird, regardless of where it happened, they would likely face jail time. This is a good thing. However, regardless of how endangered a plant may be, as long as it is on private property and written consent is given by the land owner, one can harvest to their hearts content. It could be the last population in existence. The point of the matter is, endangered plants only receive protection on federal lands. Even then, enforcement is difficult at best. 

Plant poaching is serious business. The victims are usually pretty species like orchids or valuable species like American ginseng. The rarer something is, the higher the price. Someone will always be willing to pay top dollar to add something rare to their collection. This story is repeated time and time again throughout the world but one particularly interesting example centers on a plant that most people are familiar with and have probably attempted to grow at one point in their lives - the Venus fly trap (Dionaea muscipula).

It may be counter intuitive to believe that a plant so often sold in grocery stores could be in trouble but the Venus flytrap truly is. In the wild, Venus fly traps are what we call endemics. They are native to a small portion of land in the Carolinas and nowhere else. Sadly, the long leaf pine savannahs and Carolina bays that they call home are being gobbled up by golf courses, pine plantations, and housing developments. The Venus fly trap (as well as over 100 other endangered species) are quickly losing the only habitat in the world that they exist. 

Of the 107 Venus fly trap populations that remain, only 65 of them are located on protected land. If habitat destruction wasn't enough, plant collectors, both legal and illegal, descend upon this region to get their hands on wild fly traps. This, my friends, is the definition of stupidity and greed. A simple internet search will turn up countless hobbyists and nurseries alike that culture these plants in captivity. It isn't very hard to do and it can be done on a massive scale. 

There is simply no reason to have to harvest Venus fly traps from the wild. None. Despite the plight of this unique species, legal protection of the Venus fly trap is almost non existent. It is listed as a "species of special concern" in North Carolina, which basically means nothing. For poachers, this really doesn't matter. Thousands of plants are stolen from the wild on protected and unprotected lands alike. Recent felony charges against Venus fly trap poachers offer some hope that the situation may be changing but that still does nothing to protect plants that, through senseless loopholes, are collected legally. 

This circles back to those plants we often see for sale in grocery stores. If they are in a red pot with a clear plastic cup on top, you can almost guarantee they came from the Fly-Trap Farm. This company openly admits to buying and selling plants collected from the wild. Despite the afore mentioned fact that culturing them in captivity is done with relative ease, the demand for these carnivorous curiosities coupled with their perceived disposability means that wild populations of this already threatened plant are growing smaller and smaller. 

Venus fly traps are endemics. They grow nowhere else in the world. If their habitat is destroyed and demand for wild plants continues, there is no Plan B. This species will be lost to the world forever. Again, there is no reason to buy wild collected plants. Plenty of hobbyists and nurseries such as The Carnivore Girl, Meadowview Biological Research Station​, and California Carnivores​ (just to name a few) offer reasonably priced cultivated Venus fly traps. Whereas it is difficult or even impossible to squash poaching for good, we as consumers can always vote with our wallets. 

It is tough to say whether or not there is hope for the Venus fly trap and its neighbors. This region of the Carolinas is growing in its human population. So many Venus fly trap populations have already been lost forever and more are likely to disappear in the near future. There may be hope, however, and it comes in the form of land protection. Recent acquisitions of large tracts of Venus fly trap habitat are promising. Regardless, unless the public speaks up about the plight of these long leaf pine savannahs and Carolina bays, no one is going to listen. Plants deserve the same protection as animals. Heck, we wouldn't have any cute and fuzzy megafauna if it were not for healthy plant populations. Protecting plants needs to be a priority. 

Photo Credit: NC Orchid (http://bit.ly/1MUlE0x)

Further Reading:
http://archive.audubonmagazine.org/features0803/carnivorousplants.html

http://www.iucnredlist.org/details/39636/0

http://wunc.org/post/north-carolina-enacts-venus-flytrap-theft-laws-how-big-problem-really#stream/0

Swamp Pink

Photo by Kerry Wixted licensed under CC BY 2.0

Photo by Kerry Wixted licensed under CC BY 2.0

The name "swamp pink" just doesn't do Helonias bullata justice. Yes, this species grows in wetlands and yes, the flowers are indeed pink. However, seeing one of these beauties in person will help you realize that the grandeur of such a plant cannot be summed up by any title. Sadly, if we continue to treat wetlands with rampant disregard, future generations will only see swamp pinks in the pages of a book or in an internet photo album.

Photo by Doug McGrady licensed under CC BY 2.0

Photo by Doug McGrady licensed under CC BY 2.0

As stated, swamp pink likes to have its feet wet. Not just any old wetland will do though. Swamp pinks require a very stable water table with a water line that rests just below the dense rosette of strap-like leaves. At one time, this species could be found from Staten Island, New York all the way south to Georgia. There is even a disjunct population located in the Southern Appalachian Mountains. Today, swamp pink has been reduced to a mere fraction of this former range and now only occurs in isolated pockets of New Jersey, Delaware, Maryland, Virginia, North Carolina, South Carolina, and Georgia.

Photo by Maja Dumat licensed under CC BY 2.0

Photo by Maja Dumat licensed under CC BY 2.0

There are two major threats to the continued survival of this species - wetland destruction and poaching. Because it is a magnificent looking plant, it is often dug up and taken away. Sadly, swamp pink does not transplant well and plants rarely survive the ordeal. Far more deadly to this species is loss of habitat. It isn't just outright destruction of wetlands either. Alterations in the hydrology that stem from increased runoff and poor wetland buffering can cause entire populations to die off.

Both seed production and germination rates are low for this species. What's more, viable seeds suffer from minuscule dispersal distances. Because of this, establishment of new populations can be difficult. Also, since most reproduction is clonal, the gene pools of many extant populations are quite shallow. The plight of the swamp pink really brings meaning to the cultural meme "this is why we can't have nice things."

Hope for species like the swamp pink can only come through wetland conservation and restoration efforts. If you care about things like clean water and biodiversity, please consider supporting groups like The Wetlands Initiative: http://www.wetlands-initiative.org

Further Reading: [1] [2] [3]

The Bells of Oconee

Photo by Philip Bouchard licensed under CC BY-NC-ND 2.0

Photo by Philip Bouchard licensed under CC BY-NC-ND 2.0

The whole point of In Defense of Plants is to remove the human element and tell the story of plants for what they are. I find their stories to be far more interesting than any anthropocentric use they might have. However, the following tale was just far too compelling to ignore. It is a story of passion and, in the end, really encompasses the reality of the species it centers around.

Asa Gray was an eminent 19th century botanist. In 1838, Gray left America for Europe in order to examine herbarium specimens which would reveal the original sources of American flora. While in Paris, Gray was pouring over collections made by Andre Michaux when he came across a poorly preserved specimen of an unnamed plant "with a habit of Pyrola and the foliage of Galax" originating from the "High Mountains of Carolina."

For whatever reason, Gray became enamored with this small pressed plant. He knew it had to be a new species. Upon returning to America, Gray went about organizing expeditions to rediscover this odd little botanical wonder. Sadly it would be another 40 years before he would see a living specimen. 

The species in question is Shortia galacifolia, better known as Oconee bells. A member of the family Diapensiaceae, Shortia is often described as a small, spreading, evergreen sub-shrub. In early spring, each plant produces a beautiful whiteish-pink, bell shaped flower. Today, Shortia is only known from a small handful of populations growing along a couple stream banks in the Southern Appalachians. The original population that Michaux collected from now lies under 980 feet of water, lost forever by the damming of the Keowee River. 

There has been a lot of speculation over why this plant is endemic. A lot of it has to do with Shortia's germination requirements. It is a plant of disturbance, relying on things like blowdowns or minor landslides to open the canopy just enough to create the perfect microclimate. As canopies close, populations languish and disappear. Fortunately for Shortia, collections have been out-planted at a handful of botanical gardens throughout the region where they grow and persist in great numbers. 

Further Reading:
http://arnoldia.arboretum.harvard.edu/pdf/articles/1991-51-4-asa-gray-and-his-quest-for-shortia-galacifolia.pdf

http://www.jstor.org/stable/2483507?seq=1#page_scan_tab_contents

http://www.jstor.org/stable/4033240?seq=1#page_scan_tab_contents

http://www.jstor.org/stable/23306488?seq=1#page_scan_tab_contents

American Heart's Tongue Fern

When looking for ferns, it is easy to have a specific kind of search imagine in your head. Your mind's eye is tuned into the long, lacy look of dissected fronds but there are ferns out there that will challenge you to break that mold. I have had the wonderful privilege of meeting some of these fern species this year, but there is one species in particular that has really stuck out.

Meet the American hart's tongue fern, Asplenium scolopendrium var. americanum. The hart's tongue, as you can see, is absolutely striking. Its long, slender, uncut fronds form a disheveled rosette and the sori running along the underside make each frond look like a big, green centipede. Asplenium scolopendrium itself is a wide ranging species of fern, growing on limestone outcroppings throughout Europe but populations in North America are rather sparse and disjunct. In fact, the U.S. Fish and Wildlife Service has listed it as a threatened species. There are some morphological distinctions between the European and North American populations but the major difference is in their number of chromosomes. European hart's tongues are diploid whereas North America's are tetraploid. Because of these differences, botanists consider them distinct varieties.

Why the American variety is so rare is not fully understood, but human activities have not helped matters. Mining, logging, and development have wiped out many historic populations of these ferns. Their habitat specificity mixed with their already low numbers make for little to no range expansion for most populations. They seem to grow in close association with dolomitic limestone, which is high in magnesium. 

They also seem to rely on a specific mix of bryophyte communities, low light levels, moisture, and snow pack in order to persist. Spores that land on significant bryophyte patches seem to germinate better. Young ferns seem to perform better in mixed light levels, especially near canopy gaps. It has also been shown that snow pack is directly correlated to the vigor of each population. In years with below average snow pack, the plants seem to have trouble retaining enough moisture to survive.

This is such an incredible species of fern. To lose it would mean a serious loss for our planet. There is a good effort being put forth to protect, study, grow, and form a deeper understanding with the American hart's tongue fern. The more we learn about this species, the better we can understand what it is going to take to ensure that it persists far into the future.

Photo Credit: James Johnson (http://imgur.com/a/J1Ez5)

Further Reading:
http://www.fws.gov/northeast/nyfo/es/amhtfrecovplan.pdf

http://www.bioone.org/doi/abs/10.3159/TORREY-D-11-00054.1

http://www.fs.fed.us/

http://www.centerforplantconservation.org/

Blowout Penstemon

Photo by Vernon Jenewein Vljenewein Public domain

Photo by Vernon Jenewein Vljenewein Public domain

While living and working in Wyoming, I had the chance to meet so many amazing plant species. Many of these were quite unique to the high desert environments where we were assigned. Countless hours were spent searching large swaths of land rarely visited by humans. One species of plant managed to elude me during my time in that beautiful part of the country. The plant is incredibly rare and thus a focus of federal protection and restoration efforts. 

Based on first impressions, blowout penstemon (Penstemon haydenii) may look like any other penstemon. The similarities stop there and indeed, this is one of the most unique species of penstemon I have ever heard of. Originally it was only known from a few locations in the Sand Hills of Nebraska. Recently, a few populations were discovered in Wyoming but it is by no means common. 

As its common name suggests, P. haydenii is a specialist of blowouts. These depressions in the sand are caused by blustering winds that carve out and remove all vegetation. Most plants cannot survive in these conditions. There is very little water, the sands are constantly shifting, and as the wind kicks up sand at high speeds, the abrasive force can actually cut down frail vegetation. This is where P. haydenii excels. 

It has a thick, waxy cuticle covering its stem and leaves that protect it from this sandblasting effect as well as drought. The seeds of these species are dispersed by wind and have extreme longevity in the soil. They can remain dormant for decades until the right conditions are present for them to germinate. P. haydenii seeds need at least 2 weeks of steady moisture and lots of abrasion from sand in order to break dormancy. Research has shown that these conditions are only ever present one out of every 8 to 10 years. As a result, P. haydenii has a debilitatingly small recruitment window. 

This rarity has placed it on the endangered species list. Ironically, the very regulations that were put into place to control range degradation by cattle ranchers may have caused serious declines in this species. It was once common practice to over-graze the land where P. haydenii is found and as a result, vegetation became sparse. This increased the likelihood of blowout formation, which favored P. haydenii. Fire suppression is another threat. Regular fires help kill back vegetation that would otherwise outcompete P. haydenii

With droughts on the increase and human activities expanding into areas where the few remaining populations of P. haydenii occur, the future of this strange little endemic is uncertain. There has been a lot of effort to save and restore this species numbers but it is by no means the end of the story. Only time will tell...

Photo Credit: Vernon Jenewein Vljenewein

Further Reading:
http://plants.usda.gov/core/profile?symbol=peha12

http://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=Q2EX